4 research outputs found

    Estimation of Seasonal Influenza Attack Rates and Antibody Dynamics in Children Using Cross-Sectional Serological Data.

    Get PDF
    Directly measuring evidence of influenza infections is difficult, especially in low-surveillance settings such as sub-Saharan Africa. Using a Bayesian model, we estimated unobserved infection times and underlying antibody responses to influenza A/H3N2, using cross-sectional serum antibody responses to 4 strains in children aged 24-60 months. Among the 242 individuals, we estimated a variable seasonal attack rate and found that most children had ≥1 infection before 2 years of age. Our results are consistent with previously published high attack rates in children. The modeling approach highlights how cross-sectional serological data can be used to estimate epidemiological dynamics

    Prior upregulation of interferon pathways in the nasopharynx impacts viral shedding following live attenuated influenza vaccine challenge in children.

    Get PDF
    In children lacking influenza-specific adaptive immunity, upper respiratory tract innate immune responses may influence viral replication and disease outcome. We use trivalent live attenuated influenza vaccine (LAIV) as a surrogate challenge model in children aged 24-59 months to identify pre-infection mucosal transcriptomic signatures associated with subsequent viral shedding. Upregulation of interferon signaling pathways prior to LAIV is significantly associated with lower strain-specific viral loads (VLs) at days 2 and 7. Several interferon-stimulated genes are differentially expressed in children with pre-LAIV asymptomatic respiratory viral infections and negatively correlated with LAIV VLs. Upregulation of genes enriched in macrophages, neutrophils, and eosinophils is associated with lower VLs and found more commonly in children with asymptomatic viral infections. Variability in pre-infection mucosal interferon gene expression in children may impact the course of subsequent influenza infections. This variability may be due to frequent respiratory viral infections, demonstrating the potential importance of mucosal virus-virus interactions in children

    Streptococcus pyogenes colonization in children aged 24-59 months in The Gambia: Impact of Live Attenuated Influenza Vaccine and associated serological responses

    Get PDF
    BACKGROUND: Immunity to Streptococcus pyogenes in high burden settings is poorly understood. We explored S. pyogenes nasopharyngeal colonization after intranasal live attenuated influenza vaccine (LAIV) among Gambian children aged 24-59 months, and resulting serological response to 7 antigens. METHODS: A post-hoc analysis was performed in 320 children randomized to receive LAIV at baseline (LAIV group) or not (control). S. pyogenes colonization was determined by quantitative Polymerase Chain Reaction (qPCR) on nasopharyngeal swabs from baseline (D0), day 7 (D7) and day 21 (D21). Anti-streptococcal IgG was quantified, including a subset with paired serum pre/post S. pyogenes acquisition. RESULTS: The point prevalence of S. pyogenes colonization ranged from 7-13%. In children negative at D0, S. pyogenes was detected at D7 or D21 in 18% of LAIV group and 11% of control group participants (p=0.12). The odds ratio (OR) for colonization over time was significantly increased in the LAIV group (D21 vs D0 OR 3.18, p=0.003) but not in the control group (OR 0.86, p=0.79). The highest IgG increases following asymptomatic colonization were seen for M1 and SpyCEP proteins. CONCLUSIONS: Asymptomatic S. pyogenes colonization appears modestly increased by LAIV, and may be immunologically significant. LAIV could be used to study influenza-S. pyogenes interactions

    IL-1α is required for T cell-driven weight loss after respiratory viral infection

    No full text
    Respiratory viral infections remain a major cause of hospitalization and death worldwide. Patients with respiratory infections often lose weight. While acute weight loss is speculated to be a tolerance mechanism to limit pathogen growth, severe weight loss following infection can cause quality of life deterioration. Despite the clinical relevance of respiratory infection-induced weight loss, its mechanism is not yet completely understood. We utilized a model of CD 8+ T cell-driven weight loss during respiratory syncytial virus (RSV) infection to dissect the immune regulation of post-infection weight loss. Supporting previous data, bulk RNA sequencing indicated significant enrichment of the interleukin (IL)-1 signaling pathway after RSV infection. Despite increased viral load, infection-associated weight loss was significantly reduced after IL-1α (but not IL-1β) blockade. IL-1α depletion resulted in a reversal of the gut microbiota changes observed following RSV infection. Direct nasal instillation of IL-1α also caused weight loss. Of note, we detected IL-1α in the brain after either infection or nasal delivery. This was associated with changes in genes controlling appetite after RSV infection and corresponding changes in signaling molecules such as leptin and growth/differentiation factor 15. Together, these findings indicate a lung-brain-gut signaling axis for IL-1α in regulating weight loss after RSV infection.</p
    corecore