21 research outputs found

    Water-condition effects on rhizobia competition for cowpea nodule occupancy

    Get PDF
    Two indigenous bradyrhizobia strains displaying different natural behaviours towards water regime (strain ORS 3257, nodulating more frequently in favourable-water conditions and strain ORS 3260, in limited-water conditions) were studied for their competitivity for nodulation of cowpea (Mouridecultivar) under favourable and limited water conditions in non-sterile soil. The nodule occupancy was studied by PCR-RFLP analysis. Both strains showed good competition with other indigenous rhizobia populations under favourable- and limited-water conditions. Competition between the inoculatedstrains in the mixture varied between water regimes. In non-limited-water conditions, strain ORS 3257 was the best competitor, whereas in limited-water conditions, strain ORS 3260 was the best competitor. Results indicated that screening of strains according to their environmental origin could ensuresuccessful rhizobia inoculatio

    Plant species diversity for sustainable management of crop pests and diseases in agroecosystems: a review

    Full text link

    Decomposition of roots and shoots of perennial grasses and annual barley-separately or in two residue mixes

    No full text
    Little is known about the decomposition rates of shoot and root residues of perennial grasses. This knowledge is important to estimate the carbon sequestration potential of the grasses. An incubation experiment was carried out in a sandy clay loam with shoot and root residues of three native perennial grasses (Wallaby grass, Stipa sp. and Kangaroo grass) and the annual grass barley either separately or in mixtures of two residues. Respiration rate was measured over 18 days, and microbial C and available N were measured on days 0 and 18. Decomposition was lower for roots than for shoots and lower for residues of perennial grasses than for barley. Cumulative respiration was positively correlated with water-soluble C in the residues but not with residue C/N. In the mixtures, the measured cumulative respiration was higher than the expected value in five of the nine mixes usually where the differences in cumulative respiration between the individual residues were relatively small. Lower than expected cumulative respiration were found in two of the mixtures in which barley shoots (high cumulative respiration) were mixed with residues with low cumulative respiration. There was a negative correlation between the change in microbial biomass C concentration from day 0 to day 18 and cumulative respiration on day 18. In the amended soils, the available N concentration decreased from day 0 to day 18. It is concluded that the low decomposition rate of perennial grasses residues should favour C sequestration, but that mixing residues of similar decomposition rate may accelerate their decomposition.Andong Shi, Chris Penfold, Petra Marschne

    A single immunization with MVA expressing GnGc glycoproteins promotes epitope-specific CD8+-T cell activation and protects immune-competent mice against a lethal RVFV infection

    Get PDF
    BACKGROUND: Rift Valley fever virus (RVFV) is a mosquito-borne pathogen causing an important disease in ruminants often transmitted to humans after epizootic outbreaks in African and Arabian countries. To help combat the spread of the disease, prophylactic measures need to be developed and/or improved. METHODOLOGY/PRINCIPAL FINDINGS: In this work, we evaluated the immunogenicity and protective efficacy of recombinant plasmid DNA and modified vaccinia virus Ankara (rMVA) vectored vaccines against Rift Valley fever in mice. These recombinant vaccines encoded either of two components of the Rift Valley fever virus: the viral glycoproteins (Gn/Gc) or the nucleoprotein (N). Following lethal challenge with live RVFV, mice immunized with a single dose of the rMVA-Gn/Gc vaccine showed no viraemia or clinical manifestation of disease, but mounted RVFV neutralizing antibodies and glycoprotein specific CD8+ T-cell responses. Neither DNA-Gn/Gc alone nor a heterologous prime-boost immunization schedule (DNA-Gn/Gc followed by rMVAGn/Gc) was better than the single rMVA-Gn/Gc immunization schedule with regards to protective efficacy. However, the rMVA-Gn/Gc vaccine failed to protect IFNAR(-/-) mice upon lethal RVFV challenge suggesting a role for innate responses in protection against RVFV. Despite induction of high titer antibodies against the RVFV nucleoprotein, the rMVA-N vaccine, whether in homologous or heterologous prime-boost schedules with the corresponding recombinant DNA vaccine, only conferred partial protection to RVFV challenge. CONCLUSIONS/SIGNIFICANCE: Given the excellent safety profile of rMVA based vaccines in humans and animals, our data supports further development of rMVA-Gn/Gc as a vaccine strategy that can be used for the prevention of Rift Valley fever in both humans and livestock

    Therapeutic Strategies to Treat Dry Eye in an Aging Population

    No full text
    Dry eye (DE) is a prevalent ocular disease that primarily affects the elderly. Affecting up to 30% of adults aged 50 years and older, dry eye affects both visual function and quality of life. Symptoms of dry eye which include ocular pain (aching, burning), visual disturbances, and tearing can be addressed with therapeutic agents that target dysfunction of the meibomian glands, lacrimal glands, goblet cells, ocular surface and/or neural network. This review provides an overview of the efficacy, use, and limitations of current therapeutic interventions being used to treat DE
    corecore