53 research outputs found
Propositionalism without propositions, objectualism without objects
Propositionalism is the view that all intentional states are propositional states, which are states with a propositional content, while objectualism is the view that at least some intentional states are objectual states, which are states with objectual contents, such as objects, properties, and kinds. This paper argues that there are two distinct ways of understanding propositionalism and objectualism: (1) as views about the deep nature of the contents of intentional states, and (2) as views about the superficial character of the contents of intentional states. I argue that we should understand the views in the second way. I also argue that the propositionalism debate is fairly independent from debates over the deep nature of intentionality, and that this has implications for arguments for propositionalism and objectualism from claims about the nature of intentional content. I close with a short discussion of how related points apply to the debate over singular content
Spatial analysis of plague in California: niche modeling predictions of the current distribution and potential response to climate change
<p>Abstract</p> <p>Background</p> <p>Plague, caused by the bacterium <it>Yersinia pestis</it>, is a public and wildlife health concern in California and the western United States. This study explores the spatial characteristics of positive plague samples in California and tests Maxent, a machine-learning method that can be used to develop niche-based models from presence-only data, for mapping the potential distribution of plague foci. Maxent models were constructed using geocoded seroprevalence data from surveillance of California ground squirrels (<it>Spermophilus beecheyi</it>) as case points and Worldclim bioclimatic data as predictor variables, and compared and validated using area under the receiver operating curve (AUC) statistics. Additionally, model results were compared to locations of positive and negative coyote (<it>Canis latrans</it>) samples, in order to determine the correlation between Maxent model predictions and areas of plague risk as determined via wild carnivore surveillance.</p> <p>Results</p> <p>Models of plague activity in California ground squirrels, based on recent climate conditions, accurately identified case locations (AUC of 0.913 to 0.948) and were significantly correlated with coyote samples. The final models were used to identify potential plague risk areas based on an ensemble of six future climate scenarios. These models suggest that by 2050, climate conditions may reduce plague risk in the southern parts of California and increase risk along the northern coast and Sierras.</p> <p>Conclusion</p> <p>Because different modeling approaches can yield substantially different results, care should be taken when interpreting future model predictions. Nonetheless, niche modeling can be a useful tool for exploring and mapping the potential response of plague activity to climate change. The final models in this study were used to identify potential plague risk areas based on an ensemble of six future climate scenarios, which can help public managers decide where to allocate surveillance resources. In addition, Maxent model results were significantly correlated with coyote samples, indicating that carnivore surveillance programs will continue to be important for tracking the response of plague to future climate conditions.</p
Epizootiology of blood parasites in an Australian lizard: a mark-recapture study of a natural population
The dynamics of a naturally endemic blood parasite Hepatozoon hinuliae) were studied in a lizard (Eulamprus quoyii) host population, using 2 years of longitudinal data. We investigated how parasite abundance in the population varied over time, examined whether certain host sub-populations were more prone to infection, and compared parasite loads in relation to host reproductive behaviour. We recorded blood parasite infections of 331 individuals, obtained in 593 captures. Prevalence (the proportion of the host population infected) of blood parasites was high; approximately 66% of the lizard population was infected. Probability of infection increased with host age and size, but did not differ between the sexes. Within individuals, parasite load (the intensity of infection within individuals) did not vary over time, and was independent of host reproductive behaviour. Parasite load was significantly higher in males compared to females
Conservation of biodiversity as a strategy for improving human health and well-being
The Earth's ecosystems have been altered by anthropogenic processes, including land use, harvesting populations, species introductions and climate change. These anthropogenic processes greatly alter plant and animal communities, thereby changing transmission of the zoonotic pathogens they carry. Biodiversity conservation may be a potential win-win strategy for maintaining ecosystem health and protecting public health, yet the causal evidence to support this strategy is limited. Evaluating conservation as a viable public health intervention requires answering four questions: (i) Is there a general and causal relationship between biodiversity and pathogen transmission, and if so, which direction is it in? (ii) Does increased pathogen diversity with increased host biodiversity result in an increase in total disease burden? (iii) Do the net benefits of biodiversity conservation to human well-being outweigh the benefits that biodiversity-degrading activities, such as agriculture and resource utilization, provide? (iv) Are biodiversity conservation interventions cost-effective when compared to other options employed in standard public health approaches? Here, we summarize current knowledge on biodiversity-zoonotic disease relationships and outline a research plan to address the gaps in our understanding for each of these four questions. Developing practical and self-sustaining biodiversity conservation interventions will require significant investment in disease ecology research to determine when and where they will be effective.This article is part of the themed issue 'Conservation, biodiversity and infectious disease: scientific evidence and policy implications'
Distribution of the Lyme Disease Spirochete Borrelia burgdorferi in Naturally and Experimentally Infected Western Gray Squirrels (Sciurus griseus)
The dynamics of Borrelia burgdorferi infections within its natural hosts are poorly understood. We necropsied four wild-caught western gray squirrels (Sciurus griseus) that were acquired during a previous study that evaluated the reservoir competence of this rodent for the Lyme disease spirochete. One animal was infected experimentally, whereas the others were infected in the wild before capture. To investigate dissemination of B. burgdorferi and concurrent histopathologic lesions in different tissues, blood specimens, synovial and cerebrospinal fluid, ear-punch biopsies, and diverse tissue samples from skin and various organs were taken and examined by culture, polymerase chain reaction, and histology. Borrelia-positive cultures were obtained from three of the squirrels, that is, from skin biopsies (7 of 20 samples), ear-punch biopsies (2 of 8), and one (1 of 5) lymph node. Sequencing of amplicons confirmed B. burgdorferi sensu stricto (s.s.) infection in 9 of 10 culture-positive samples and in DNA extracted from all 10 positive cultures. The experimentally infected squirrel yielded most of the positive samples. In contrast, bodily fluids, all other organ specimens from these animals, and all samples from one naturally infected squirrel were negative for Borrelia for both assays. None of the necropsied squirrels exhibited specific clinical signs associated with B. burgdorferi. Similarly, necropsy and histological examination of tissues indicated the presence of underlying infectious processes, none of which could be ascribed conclusively to B. burgdorferi infection. Based on these results, obtained from a small number of animals investigated at a single time point, we suggest that B. burgdorferi s.s. infection in S. griseus may result in rather localized dissemination of spirochetes, and that mild or nonclinical disease might be more common after several months of infection duration. Since spirochetes could be detected in squirrels 7–21 months postinfection, we conclude that S. griseus can infect Ixodes pacificus ticks with B. burgdorferi s.s. trans-seasonally
Recommended from our members
Spatial analysis of plague in California: niche modeling predictions of the current distribution and potential response to climate change
Plague, caused by the bacterium Yersinia pestis, is a public and wildlife health concern in California and the western United States. This study explores the spatial characteristics of positive plague samples in California and tests Maxent, a machine-learning method that can be used to develop niche-based models from presence-only data, for mapping the potential distribution of plague foci. Maxent models were constructed using geocoded seroprevalence data from surveillance of California ground squirrels (Spermophilus beecheyi) as case points and Worldclim bioclimatic data as predictor variables, and compared and validated using area under the receiver operating curve (AUC) statistics. Additionally, model results were compared to locations of positive and negative coyote (Canis latrans) samples, in order to determine the correlation between Maxent model predictions and areas of plague risk as determined via wild carnivore surveillance.Results:Models of plague activity in California ground squirrels, based on recent climate conditions, accurately identified case locations (AUC of 0.913 to 0.948) and were significantly correlated with coyote samples. The final models were used to identify potential plague risk areas based on an ensemble of six future climate scenarios. These models suggest that by 2050, climate conditions may reduce plague risk in the southern parts of California and increase risk along the northern coast and Sierras.Conclusion:Because different modeling approaches can yield substantially different results, care should be taken when interpreting future model predictions. Nonetheless, niche modeling can be a useful tool for exploring and mapping the potential response of plague activity to climate change. The final models in this study were used to identify potential plague risk areas based on an ensemble of six future climate scenarios, which can help public managers decide where to allocate surveillance resources. In addition, Maxent model results were significantly correlated with coyote samples, indicating that carnivore surveillance programs will continue to be important for tracking the response of plague to future climate conditions
- …