388 research outputs found

    Microbial carbon mineralization in tropical lowland and montane forest soils of Peru

    Get PDF
    Climate change is affecting the amount and complexity of plant inputs to tropical forest soils. This is likely to influence the carbon (C) balance of these ecosystems by altering decomposition processes e.g., "positive priming effects" that accelerate soil organic matter mineralization. However, the mechanisms determining the magnitude of priming effects are poorly understood. We investigated potential mechanisms by adding (13)C labeled substrates, as surrogates of plant inputs, to soils from an elevation gradient of tropical lowland and montane forests. We hypothesized that priming effects would increase with elevation due to increasing microbial nitrogen limitation, and that microbial community composition would strongly influence the magnitude of priming effects. Quantifying the sources of respired C (substrate or soil organic matter) in response to substrate addition revealed no consistent patterns in priming effects with elevation. Instead we found that substrate quality (complexity and nitrogen content) was the dominant factor controlling priming effects. For example a nitrogenous substrate induced a large increase in soil organic matter mineralization whilst a complex C substrate caused negligible change. Differences in the functional capacity of specific microbial groups, rather than microbial community composition per se, were responsible for these substrate-driven differences in priming effects. Our findings suggest that the microbial pathways by which plant inputs and soil organic matter are mineralized are determined primarily by the quality of plant inputs and the functional capacity of microbial taxa, rather than the abiotic properties of the soil. Changes in the complexity and stoichiometry of plant inputs to soil in response to climate change may therefore be important in regulating soil C dynamics in tropical forest soils.This study was financed by the UK Natural Environment Research Council (NERC) grant NE/G018278/1 and is a product of the Andes Biodiversity and Ecosystem Research Group consortium (www.andesconservation.org); Patrick Meir was also supported by ARC FT110100457

    Multimodal assessment of the curing of agglomerated ores in the presence of chloride ions

    Get PDF
    Agglomeration and subsequent curing are widely used as pre-treatment for ore prior to heap leaching as it both improve the permeability of the heap and brings leaching solution into close contact with the ore, initializing the leaching reactions. Despite its widespread use there have been limited studies into the processes occurring within the agglomerates over the curing process. In this study both destructive and non-destructive imaging techniques are used to assess both the physical and chemical changes occurring within the agglomerates as they cure. The SEM/EDX is one of the most popular imaging techniques for mineral samples. It can only be carried out once for a given sample due to its destructive preparation method but provides detailed mineralogical information. A complementary tool is X-ray Microtomography (XMT), which is non-destructive and can be used to image the same object multiple times over the course of the experiment. Its main limitation, though, is that the acquired images are of X-ray attenuation values and need to be independently assigned to different mineral classifications based on, for instance, the corresponding SEM images. Combining the ability of SEM/EDX measurements to identify different mineral phases with the 3D time resolved XMT measurements can thus produce superior results to those achievable using either of the modalities on their own. In this study, we propose a methodology for quantifying the formation and depletion of mineral components of agglomerates. These methodologies will be demonstrated in ores agglomerated using a combination of sulphuric acid and ferric sulphate as well as in samples in which sodium chloride is added to the agglomeration recipe. The curing process was tracked beyond the typical time scales used industrially, highlighting that the presence of chloride ions makes a substantial difference to the chemical and structural evolution of the sample. Over this curing process most of the observed leaching occurs during the first 20 days in the presence of NaCl, while there is virtually no metal dissolution for the standard samples without NaCl. During curing the solution does not leave the agglomerates other than via evaporation. Thus, reprecipitation of metal containing mineral species was observed, especially near the agglomerate surfaces. In the presence of NaCl precipitated Cu-S-O-Cl complexes were observed suggesting that the chloride ions in solution are playing a key role in the leaching process. After 65 days of curing, the samples were water washed in order to remove soluble species, extracting 50% of the original sulphides from the agglomerates containing sodium chloride, but only 20% from the other agglomerates

    Chemical Modification of Ginsenoside on Cell Viability and Cytokine Secretion

    Get PDF
    Background: Rb1 is a ginsenoside steroid glycoside found exclusively in the plant Panax ginseng. In an earlier report, we showed that Rb1 increased cell proliferation and reduced VEGF (vascular endothelial growth factor) secretion by human retinal pigment epithelial (ARPE19) cells. Objective: In the present study, we hypothesized that chemical modification of Rb1 changes the level of VEGF secretion by ARPE19 cells. Method: Three derivatives of Rb1 were chemically synthesized by hydrogenation (Rb1-H2), acetylation (Rb1-Acyl), and epoxidation (Rb1-Epoxy). Structural modifications were confirmed by 1H Nuclear Magnetic Resonance (NMR) spectra and Mass Spectrometry (MS). To test the biological activity, chemically modified compounds were added to cell culture media and incubated for 72 hours at a concentration of 250 nM at 37°C. Conditioned media were collected and cells were harvested/ counted after treatment. Viable cell numbers were determined by the trypan blue dye exclusion method and VEGF levels by Enzyme-Linked Immunosorbent Assays (ELISA). Results: Consistent with the prior report, results of the present study show Rb1 increased cell proliferation and decreased VEGF secretion. Similar to Rb1\u27s effect on cell proliferation, treatment with Rb1-H2, Rb1-Acyl and Rb1-Epoxy resulted in an increase in cell numbers. In contrast to Rb1- induced decrease in VEGF secretion, treatment with Rb1-H2, Rb-Acyl and Rb1-Epoxy resulted in increased VEGF levels. Conclusion: Chemical modifications of the ginsenoside Rb1 significantly affect the biological activity of VEGF secretion by ARPE19 cells. Additional SAR (Structure Activity Relationship) experiments will be conducted to study the detailed mechanisms by which how specific modifications of Rb1 functional groups alter biological activities

    Meyouandus: Interactive in-venue displays. Research and Development Report

    Get PDF
    Arts practice MeYouAndUs will produce TILO, a hybrid display system for cultural venues. It uses digital screens situated in the public spaces of a venue, combined with live feeds and sensors to display engaging, interactive and personalised content. TILO aims to create a dialogue between the arts organisation, the building and its visitors, and will allow artists to carry out their own interventions. The system will be piloted at FACT, the popular cross-arts venue in Liverpool

    2004 Annual Conference of the American Folklore Society

    Get PDF

    Biodistribution and inflammatory profiles of novel penton and hexon double-mutant serotype 5 adenoviruses

    Get PDF
    The use of adenovirus serotype 5 (Ad5) vectors in the clinical setting is severely hampered by the profound liver tropism observed after intravascular delivery coupled with the pronounced inflammatory and innate immune response elicited by these vectors. Liver transduction by circulating Ad5 virions is mediated by a high-affinity interaction between the capsid hexon protein and blood coagulation factor X (FX), whilst penton-α(v)integrin interactions are thought to contribute to the induction of anti-Ad5 inflammatory and innate immune responses. To overcome these limitations, we sought to develop and characterise for the first time novel Ad5 vectors possessing mutations ablating both hexon:FX and penton:integrin interactions. As expected, intravascular administration of the FX binding-ablated Ad5HVR5*HVR7*E451Q vector (AdT*) resulted in significantly reduced liver transduction in vivo compared to Ad5. In macrophage-depleted mice, increased spleen uptake of AdT* was accompanied by an elevation in the levels of several inflammatory mediators. However ablation of the penton RGD motif in the AdT* vector background (AdT*RGE) resulted in a significant 5-fold reduction in spleen uptake and attenuated the antiviral inflammatory response. A reduction in spleen uptake and inflammatory activation was also observed in animals after intravascular administration of Ad5RGE compared to the parental Ad5 vector, with reduced co-localisation of the viral beta-galactosidase transgene with MAdCAM-1+ sinus-lining endothelial cells. Our detailed assessment of these novel adenoviruses indicates that penton base RGE mutation in combination with FX binding-ablation may be a viable strategy to attenuate the undesired liver uptake and pro-inflammatory responses to Ad5 vectors after intravascular deliver

    Alternative splicing of coq-2 controls the levels of rhodoquinone in animals

    Get PDF
    Parasitic helminths use two benzoquinones as electron carriers in the electron transport chain. In normoxia, they use ubiquinone (UQ), but in anaerobic conditions inside the host, they require rhodoquinone (RQ) and greatly increase RQ levels. We previously showed the switch from UQ to RQ synthesis is driven by a change of substrates by the polyprenyltransferase COQ-2 (Del Borrello et al., 2019; Roberts Buceta et al., 2019); however, the mechanism of substrate selection is not known. Here, we show helminths synthesize two coq-2 splice forms, coq-2a and coq-2e, and the coq-2e-specific exon is only found in species that synthesize RQ. We show that in Caenorhabditis elegans COQ-2e is required for efficient RQ synthesis and survival in cyanide. Importantly, parasites switch from COQ-2a to COQ-2e as they transit into anaerobic environments. We conclude helminths switch from UQ to RQ synthesis principally via changes in the alternative splicing of coq-2.Agencia Nacional de Investigación e InnovaciónCanadian Institutes of Health Researc
    corecore