87 research outputs found

    A multi objective volleyball premier league algorithm for green scheduling identical parallel machines with splitting jobs

    Get PDF
    Parallel machine scheduling is one of the most common studied problems in recent years, however, this classic optimization problem has to achieve two conflicting objectives, i.e. minimizing the total tardiness and minimizing the total wastes, if the scheduling is done in the context of plastic injection industry where jobs are splitting and molds are important constraints. This paper proposes a mathematical model for scheduling parallel machines with splitting jobs and resource constraints. Two minimization objectives - the total tardiness and the number of waste - are considered, simultaneously. The obtained model is a bi-objective integer linear programming model that is shown to be of NP-hard class optimization problems. In this paper, a novel Multi-Objective Volleyball Premier League (MOVPL) algorithm is presented for solving the aforementioned problem. This algorithm uses the crowding distance concept used in NSGA-II as an extension of the Volleyball Premier League (VPL) that we recently introduced. Furthermore, the results are compared with six multi-objective metaheuristic algorithms of MOPSO, NSGA-II, MOGWO, MOALO, MOEA/D, and SPEA2. Using five standard metrics and ten test problems, the performance of the Pareto-based algorithms was investigated. The results demonstrate that in general, the proposed algorithm has supremacy than the other four algorithms

    Using machine learning in prediction of ICU admission, mortality, and length of stay in the early stage of admission of COVID-19 patients

    Get PDF
    The recent COVID-19 pandemic has affected health systems across the world. Especially, Intensive Care Units (ICUs) have played a pivotal role in the treatment of critically-ill patients. At the same time however, the increasing number of admissions due to the vast prevalence of the virus have caused several problems for ICU wards such as overburdening of staff and shortages of medical resources. These issues might have affected the quality of healthcare services provided directly impacting a patient’s survival. The objective of this research is to leverage Machine Learning (ML) on hospital data in order to support hospital managers and practitioners with the treatment of COVID-19 patients. This is accomplished by providing more detailed inference about a patient’s likelihood of ICU admission, mortality and in case of hospitalization the length of stay (LOS). In this pursuit, the outcome variables are in three separate models predicted by five different ML algorithms: eXtreme Gradient Boosting (XGB), K-Nearest Neighbor (KNN), Random Forest (RF), bagged-CART (b-CART), and LogitBoost (LB). With the exception of KNN, the studied models show good predictive capabilities when evaluating relevant accuracy scores, such as area under the curve. By implementing an ensemble stacking approach (either a Neural Net or a General Linear Model) on top of the aforementioned ML algorithms the performance is further boosted. Ultimately, for the prediction of admission to the ICU, the ensemble stacking via a Neural Net achieved the best result with an accuracy of over 95%. For mortality at the ICU, the vanilla XGB performed slightly better (1% difference with the meta-model). To predict large length of stays both ensemble stacking approaches yield comparable results. Besides it direct implications for managing COVID-19 patients, the approach presented serves as an example how data can be employed in future pandemics or crises

    Applications of different machine learning approaches in prediction of breast cancer diagnosis delay

    Get PDF
    Background: The increasing rate of breast cancer (BC) incidence and mortality in Iran has turned this disease into a challenge. A delay in diagnosis leads to more advanced stages of BC and a lower chance of survival, which makes this cancer even more fatal. Objectives: The present study was aimed at identifying the predicting factors for delayed BC diagnosis in women in Iran.Methods: In this study, four machine learning methods, including extreme gradient boosting (XGBoost), random forest (RF), neural networks (NNs), and logistic regression (LR), were applied to analyze the data of 630 women with confirmed BC. Also, different statistical methods, including chi-square, p-value, sensitivity, specificity, accuracy, and area under the receiver operating characteristic curve (AUC), were utilized in different steps of the survey.Results: Thirty percent of patients had a delayed BC diagnosis. Of all the patients with delayed diagnoses, 88.5% were married, 72.1% had an urban residency, and 84.8% had health insurance. The top three important factors in the RF model were urban residency (12.04), breast disease history (11.58), and other comorbidities (10.72). In the XGBoost, urban residency (17.54), having other comorbidities (17.14), and age at first childbirth (>30) (13.13) were the top factors; in the LR model, having other comorbidities (49.41), older age at first childbirth (82.57), and being nulliparous (44.19) were the top factors. Finally, in the NN, it was found that being married (50.05), having a marriage age above 30 (18.03), and having other breast disease history (15.83) were the main predicting factors for a delayed BC diagnosis.Conclusion: Machine learning techniques suggest that women with an urban residency who got married or had their first child at an age older than 30 and those without children are at a higher risk of diagnosis delay. It is necessary to educate them about BC risk factors, symptoms, and self-breast examination to shorten the delay in diagnosis

    A multi objective volleyball premier league algorithm for green scheduling identical parallel machines with splitting jobs

    Get PDF
    Parallel machine scheduling is one of the most common studied problems in recent years, however, this classic optimization problem has to achieve two conflicting objectives, i.e. minimizing the total tardiness and minimizing the total wastes, if the scheduling is done in the context of plastic injection industry where jobs are splitting and molds are important constraints. This paper proposes a mathematical model for scheduling parallel machines with splitting jobs and resource constraints. Two minimization objectives - the total tardiness and the number of waste - are considered, simultaneously. The obtained model is a bi-objective integer linear programming model that is shown to be of NP-hard class optimization problems. In this paper, a novel Multi-Objective Volleyball Premier League (MOVPL) algorithm is presented for solving the aforementioned problem. This algorithm uses the crowding distance concept used in NSGA-II as an extension of the Volleyball Premier League (VPL) that we recently introduced. Furthermore, the results are compared with six multi-objective metaheuristic algorithms of MOPSO, NSGA-II, MOGWO, MOALO, MOEA/D, and SPEA2. Using five standard metrics and ten test problems, the performance of the Pareto-based algorithms was investigated. The results demonstrate that in general, the proposed algorithm has supremacy than the other four algorithms

    Multi-objective volleyball premier league algorithm

    Get PDF
    This paper proposes a novel optimization algorithm called the Multi-Objective Volleyball Premier League (MOVPL) algorithm for solving global optimization problems with multiple objective functions. The algorithm is inspired by the teams competing in a volleyball premier league. The strong point of this study lies in extending the multi-objective version of the Volleyball Premier League algorithm (VPL), which is recently used in such scientific researches, with incorporating the well-known approaches including archive set and leader selection strategy to obtain optimal solutions for a given problem with multiple contradicted objectives. To analyze the performance of the algorithm, ten multi-objective benchmark problems with complex objectives are solved and compared with two well-known multiobjective algorithms, namely Multi-Objective Particle Swarm Optimization (MOPSO) and Multi-Objective Evolutionary Algorithm Based on Decomposition (MOEA/D). Computational experiments highlight that the MOVPL outperforms the two state-of-the-art algorithms on multi-objective benchmark problems. In addition, the MOVPL algorithm has provided promising results on well-known engineering design optimization problems

    Predicting the necessity of oxygen therapy in the early stage of COVID-19 using machine learning

    Get PDF
    Medical oxygen is a critical element in the treatment process of COVID-19 patients which its shortage impacts the treatment process adversely. This study aims to apply machine learning (ML) to predict the requirement for oxygen-based treatment for hospitalized COVID-19 patients. In the first phase, demographic information, symptoms, and patient’s background were extracted from the databases of two local hospitals in Iran, and preprocessing actions were applied. In the second step, the related features were selected. Lastly, five ML models including logistic regression (LR), random forest (RF), XGBoost, C5.0, and neural networks (NNs) were implemented and compared based on their accuracy and capability. Among the vari- ables related to the patient’s background, consuming opium due to the high rate of opium users in Iran was considered in the models. Of the 398 patients included in the study, 112 (28.14%) received oxygen-based treatment. Shortness of breath (71.42%), fever (62.5%), and cough (59.82%) had the highest frequency in patients with oxygen requirements. The most important variables for prediction were shortness of breath, cough, age, and fever. For opioid-addicted patients, in addition to the high mortality rate (23.07%), the rate of oxygen-based treatment was twice as high as non-addicted patients. XGBoost and LR obtained the highest area under the curve with values of 88.7% and 88.3%, respectively. For accuracy, LR and NNs achieved the best and same accuracy (86.42%). This approach provides a tool that accurately predicts the need for oxygen in the treatment process of COVID-19 patients and helps hospital resource management. Keywords COVID-19 · Opioid addiction · Oxygen treatment · Prediction · Machine learning · XGBoos

    An Ontology-Enabled Approach for Modelling Business Processes

    Get PDF
    International audienceColoured Petri Nets (CPNs) have formal semantics and can describe any type of workflow system, behavioral and syntax wise simultaneously. They are widely studied and successfully applied in modelling of workflows and workflow systems. There is an inherent problem regarding business processes modelled with CPNs sharing and subsequently their reuse need to be considered. The Semantic Web technologies, such as ontologies, with their characteristics demonstrate that they can play an important role in this scenario. In this paper, we propose an ontological approach for representing business models in a meta-knowledge base. Firstly, the CPN ontology is defined to represent CPNs with OWL DL. Secondly, we introduce four basic types of manipulation operations on process models used to develop and modify business workflow patterns. To the best of our knowledge, representing business process definitions and business workflow patterns as knowledge based upon ontologies is a novel approach

    Applications of different machine learning approaches in prediction of breast cancer diagnosis delay

    Get PDF
    Background: The increasing rate of breast cancer (BC) incidence and mortality in Iran has turned this disease into a challenge. A delay in diagnosis leads to more advanced stages of BC and a lower chance of survival, which makes this cancer even more fatal. Objectives: The present study was aimed at identifying the predicting factors for delayed BC diagnosis in women in Iran. Methods: In this study, four machine learning methods, including extreme gradient boosting (XGBoost), random forest (RF), neural networks (NNs), and logistic regression (LR), were applied to analyze the data of 630 women with confirmed BC. Also, different statistical methods, including chi-square, p-value, sensitivity, specificity, accuracy, and area under the receiver operating characteristic curve (AUC), were utilized in different steps of the survey. Results: Thirty percent of patients had a delayed BC diagnosis. Of all the patients with delayed diagnoses, 88.5% were married, 72.1% had an urban residency, and 84.8% had health insurance. The top three important factors in the RF model were urban residency (12.04), breast disease history (11.58), and other comorbidities (10.72). In the XGBoost, urban residency (17.54), having other comorbidities (17.14), and age at first childbirth (>30) (13.13) were the top factors; in the LR model, having other comorbidities (49.41), older age at first childbirth (82.57), and being nulliparous (44.19) were the top factors. Finally, in the NN, it was found that being married (50.05), having a marriage age above 30 (18.03), and having other breast disease history (15.83) were the main predicting factors for a delayed BC diagnosis. Conclusion: Machine learning techniques suggest that women with an urban residency who got married or had their first child at an age older than 30 and those without children are at a higher risk of diagnosis delay. It is necessary to educate them about BC risk factors, symptoms, and self-breast examination to shorten the delay in diagnosis. 2023 Dehdar, Salimifard, Mohammadi, Marzban, Saadatmand, Fararouei and Dianati-Nasab

    Applications of different machine learning approaches in prediction of breast cancer diagnosis delay

    Get PDF
    Background: The increasing rate of breast cancer (BC) incidence and mortality in Iran has turned this disease into a challenge. A delay in diagnosis leads to more advanced stages of BC and a lower chance of survival, which makes this cancer even more fatal. Objectives: The present study was aimed at identifying the predicting factors for delayed BC diagnosis in women in Iran. Methods: In this study, four machine learning methods, including extreme gradient boosting (XGBoost), random forest (RF), neural networks (NNs), and logistic regression (LR), were applied to analyze the data of 630 women with confirmed BC. Also, different statistical methods, including chi-square, p-value, sensitivity, specificity, accuracy, and area under the receiver operating characteristic curve (AUC), were utilized in different steps of the survey. Results: Thirty percent of patients had a delayed BC diagnosis. Of all the patients with delayed diagnoses, 88.5% were married, 72.1% had an urban residency, and 84.8% had health insurance. The top three important factors in the RF model were urban residency (12.04), breast disease history (11.58), and other comorbidities (10.72). In the XGBoost, urban residency (17.54), having other comorbidities (17.14), and age at first childbirth (>30) (13.13) were the top factors; in the LR model, having other comorbidities (49.41), older age at first childbirth (82.57), and being nulliparous (44.19) were the top factors. Finally, in the NN, it was found that being married (50.05), having a marriage age above 30 (18.03), and having other breast disease history (15.83) were the main predicting factors for a delayed BC diagnosis. Conclusion: Machine learning techniques suggest that women with an urban residency who got married or had their first child at an age older than 30 and those without children are at a higher risk of diagnosis delay. It is necessary to educate them about BC risk factors, symptoms, and self-breast examination to shorten the delay in diagnosis. Copyright © 2023 Dehdar, Salimifard, Mohammadi, Marzban, Saadatmand, Fararouei and Dianati-Nasab
    corecore