21 research outputs found

    Pseudo-MRM method for the selective detection of truncated tissue factor

    Full text link
    A pseudo-MRM method using high-resolution mass spectrometry is presented for the specific detection of truncated tissue factor (tTF), retargeted to tumor vasculature by GNGRAHA peptide (tTF-NGR), in serum. In order to increase sensitivity, serum proteins are pre-separated by 1D-gel electrophoresis and the gel band corresponding to recombinant human tTF-NGR is investigated. Calibration is performed using the gelseparated pure protein. The method relies on six unique tryptic peptides and is sensitive at the low fmol level.Eine pseudo-MRM-Methode mittels hochauflösender Massenspektrometrie für den spezifischen Nachweis von truncated tissue factor (tTF; spezifiziert für Tumor-Vaskulatur durch das Peptid GNGRAHA, tTF-NGR) in Serum wird präsentiert. Zur Erhöhung der Nachweisgrenze werden die Serumproteine zunächst durch 1D-Gelelektrophorese getrennt, und nur die Bande, die rekombinantem humanem tTF-NGR entspricht, wird untersucht. Die Kalibrierung wird mit dem gel-getrennten reinen Protein durchgeführt. Die Methode nutzt sechs eindeutige tryptische Peptide und ist bis zu wenigen fmol empfindlich

    Multiparametric Magnetic Resonance Imaging for Immediate Target Hit Assessment of CD13—Targeted Tissue Factor tTF-NGR in Advanced Malignant Disease

    No full text
    Early assessment of target hit in anti-cancer therapies is a major task in oncologic imaging. In this study, immediate target hit and effectiveness of CD13-targeted tissue factor tTF-NGR in patients with advanced malignant disease enrolled in a phase I trial was assessed using a multiparametric MRI protocol. Seventeen patients with advanced solid malignancies were enrolled in the trial and received tTF-NGR for at least one cycle of five daily infusions. Tumor target lesions were imaged with multiparametric MRI before therapy initiation, five hours after the first infusion and after five days. The imaging protocol comprised ADC, calculated from DWI, and DCE imaging and vascular volume fraction (VVF) assessment. DCE and VVF values decreased within 5 h after therapy initiation, indicating early target hit with a subsequent decrease in tumor perfusion due to selective tumor vessel occlusion and thrombosis induced by tTF-NGR. Simultaneously, ADC values increased at five hours after tTF-NGR administration. In four patients, treatment had to be stopped due to an increase in troponin T hs, with subsequent anticoagulation. In these patients, a reversed effect, with DCE and VVF values increasing and ADC values decreasing, was observed after anticoagulation. Changes in imaging parameters were independent of the mean vessel density determined by immunohistochemistry. By using a multiparametric imaging approach, changes in tumor perfusion after initiation of a tumor vessel occluding therapy can be evaluated as early as five hours after therapy initiation, enabling early assessment of target hit

    Targeting Tissue Factor to Tumor Vasculature to Induce Tumor Infarction

    No full text
    Besides its central functional role in coagulation, TF has been described as being operational in the development of malignancies and is currently being studied as a possible therapeutic tool against cancer. One of the avenues being explored is retargeting TF or its truncated extracellular part (tTF) to the tumor vasculature to induce tumor vessel occlusion and tumor infarction. To this end, multiple structures on tumor vascular wall cells have been studied at which tTF has been aimed via antibodies, derivatives, or as bifunctional fusion protein through targeting peptides. Among these targets were vascular adhesion molecules, oncofetal variants of fibronectin, prostate-specific membrane antigens, vascular endothelial growth factor receptors and co-receptors, integrins, fibroblast activation proteins, NG2 proteoglycan, microthrombus-associated fibrin-fibronectin, and aminopeptidase N. Targeting was also attempted toward cellular membranes within an acidic milieu or toward necrotic tumor areas. tTF-NGR, targeting tTF primarily at aminopeptidase N on angiogenic endothelial cells, was the first drug candidate from this emerging class of coaguligands translated to clinical studies in cancer patients. Upon completion of a phase I study, tTF-NGR entered randomized studies in oncology to test the therapeutic impact of this novel therapeutic modality

    Radiation synergizes with antitumor activity of CD13-targeted tissue factor in a HT1080 xenograft model of human soft tissue sarcoma.

    No full text
    BACKGROUND:Truncated tissue factor (tTF) retargeted by NGR-peptides to aminopeptidase N (CD13) in tumor vasculature is effective in experimental tumor therapy. tTF-NGR induces tumor growth inhibition in a variety of human tumor xenografts of different histology. To improve on the therapeutic efficacy we have combined tTF-NGR with radiotherapy. METHODS:Serum-stimulated human umbilical vein endothelial cells (HUVEC) and human HT1080 sarcoma cells were irradiated in vitro, and upregulated early-apoptotic phosphatidylserine (PS) on the cell surface was measured by standard flow cytometry. Increase of cellular procoagulant function in relation to irradiation and PS cell surface concentration was measured in a tTF-NGR-dependent Factor X activation assay. In vivo experiments with CD-1 athymic mice bearing human HT1080 sarcoma xenotransplants were performed to test the systemic therapeutic effects of tTF-NGR on tumor growth alone or in combination with regional tumor ionizing radiotherapy. RESULTS:As shown by flow cytometry with HUVEC and HT1080 sarcoma cells in vitro, irradiation with 4 and 6 Gy in the process of apoptosis induced upregulation of PS presence on the outer surface of both cell types. Proapoptotic HUVEC and HT1080 cells both showed significantly higher procoagulant efficacy on the basis of equimolar concentrations of tTF-NGR as measured by FX activation. This effect can be reverted by masking of PS with Annexin V. HT1080 human sarcoma xenografted tumors showed shrinkage induced by combined regional radiotherapy and systemic tTF-NGR as compared to growth inhibition achieved by either of the treatment modalities alone. CONCLUSIONS:Irradiation renders tumor and tumor vascular cells procoagulant by PS upregulation on their outer surface and radiotherapy can significantly improve the therapeutic antitumor efficacy of tTF-NGR in the xenograft model used. This synergistic effect will influence design of future clinical combination studies

    Aminopeptidase N (CD13): Expression, Prognostic Impact, and Use as Therapeutic Target for Tissue Factor Induced Tumor Vascular Infarction in Soft Tissue Sarcoma

    No full text
    Aminopeptidase N (CD13) is expressed on tumor vasculature and tumor cells. It represents a candidate for targeted therapy, e.g., by truncated tissue factor (tTF)-NGR, binding to CD13, and causing tumor vascular thrombosis. We analyzed CD13 expression by immunohistochemistry in 97 patients with STS who were treated by wide resection and uniform chemo-radio-chemotherapy. Using a semiquantitative score with four intensity levels, CD13 was expressed by tumor vasculature, or tumor cells, or both (composite value, intensity scores 1-3) in 93.9% of the STS. In 49.5% tumor cells, in 48.5% vascular/perivascular cells, and in 58.8%, composite value showed strong intensity score 3 staining. Leiomyosarcoma and synovial sarcoma showed low expression; fibrosarcoma and undifferentiated pleomorphic sarcoma showed high expression. We found a significant prognostic impact of CD13, as high expression in tumor cells or vascular/perivascular cells correlated with better relapse-free survival and overall survival. CD13 retained prognostic significance in multivariable analyses. Systemic tTF-NGR resulted in significant growth reduction of CD13-positive human HT1080 sarcoma cell line xenografts. Our results recommend further investigation of tTF-NGR in STS patients. CD13 might be a suitable predictive biomarker for patient selection

    Radiation synergizes with antitumor activity of CD13-targeted tissue factor in a HT1080 xenograft model of human soft tissue sarcoma

    Full text link
    Background: Truncated tissue factor (tTF) retargeted by NGR-peptides to aminopeptidase N (CD13) in tumor vasculature is effective in experimental tumor therapy. tTF-NGR induces tumor growth inhibition in a variety of human tumor xenografts of different histology. To improve on the therapeutic efficacy we have combined tTF-NGR with radiotherapy. Methods: Serum-stimulated human umbilical vein endothelial cells (HUVEC) and human HT1080 sarcoma cells were irradiated in vitro, and upregulated early-apoptotic phosphatidylserine (PS) on the cell surface was measured by standard flow cytometry. Increase of cellular procoagulant function in relation to irradiation and PS cell surface concentration was measured in a tTF-NGR-dependent Factor X activation assay. In vivo experiments with CD-1 athymic mice bearing human HT1080 sarcoma xenotransplants were performed to test the systemic therapeutic effects of tTF-NGR on tumor growth alone or in combination with regional tumor ionizing radiotherapy. Results: As shown by flow cytometry with HUVEC and HT1080 sarcoma cells in vitro, irradiation with 4 and 6 Gy in the process of apoptosis induced upregulation of PS presence on the outer surface of both cell types. Proapoptotic HUVEC and HT1080 cells both showed significantly higher procoagulant efficacy on the basis of equimolar concentrations of tTF-NGR as measured by FX activation. This effect can be reverted by masking of PS with Annexin V. HT1080 human sarcoma xenografted tumors showed shrinkage induced by combined regional radiotherapy and systemic tTF-NGR as compared to growth inhibition achieved by either of the treatment modalities alone. Conclusions: Irradiation renders tumor and tumor vascular cells procoagulant by PS upregulation on their outer surface and radiotherapy can significantly improve the therapeutic antitumor efficacy of tTF-NGR in the xenograft model used. This synergistic effect will influence design of future clinical combination studies

    Transport Mechanisms and Their Pathology-Induced Regulation Govern Tyrosine Kinase Inhibitor Delivery in Rheumatoid Arthritis

    Get PDF
    <div><h3>Background</h3><p>Tyrosine kinase inhibitors (TKIs) are effective in treating malignant disorders and were lately suggested to have an impact on non-malignant diseases. However, in some inflammatory conditions like rheumatoid arthritis (RA) the <em>in vivo</em> effect seemed to be moderate. As most TKIs are taken up actively into cells by cell membrane transporters, this study aimed to evaluate the role of such transporters for the accumulation of the TKI Imatinib mesylates in RA synovial fibroblasts as well as their regulation under inflammatory conditions.</p> <h3>Methodology/Principal Findings</h3><p>The transport and accumulation of Imatinib was investigated in transporter-transfected HEK293 cells and human RA synovial fibroblasts (hRASF). Transporter expression was quantified by qRT-PCR. In transfection experiments, hMATE1 showed the highest apparent affinity for Imatinib among all known Imatinib transporters. Experiments quantifying the Imatinib uptake in the presence of specific transporter inhibitors and after siRNA knockdown of hMATE1 indeed identified hMATE1 to mediate Imatinib transport in hRASF. The anti-proliferative effect of Imatinib on PDGF stimulated hRASF was quantified by cell counting and directly correlated with the uptake activity of hMATE1. Expression of hMATE1 was investigated by Western blot and immuno-fluorescence. Imatinib transport under disease-relevant conditions, such as an altered pH and following stimulation with different cytokines, was also investigated by HPLC. The uptake was significantly reduced by an acidic extracellular pH as well as by the cytokines TNFα, IL-1β and IL-6, which all decreased the expression of hMATE1-mRNA and protein.</p> <h3>Conclusion/Significance</h3><p>The regulation of Imatinib uptake via hMATE1 in hRASF and resulting effects on their proliferation may explain moderate <em>in vivo</em> effects on RA. Moreover, our results suggest that investigating transporter mediated drug processing under normal and pathological conditions is important for developing intracellular acting drugs used in inflammatory diseases.</p> </div

    hRASF actively accumulate Imatinib and express several OCTs.

    No full text
    <p>A) Temperature dependent uptake of Imatinib (10 µM) in hRASF at 4°C (black column) and 37°C (white column) measured by HPLC. B) Expression of investigated transporters in hRASF (white columns) and hOASF (black columns) determined by qRT-PCR. Values are mean ± SEM. n.d. = not detected.</p

    hMATE1 mediates the Imatinib uptake in hRASF and governs anti-proliferating effects.

    No full text
    <p>A) Specific uptake of Imatinib (10 µM) in hRASF given as difference of accumulation at 4°C and 37°C with inhibition of hMATE1 (by 200 nM pyrimethamine), hOCT1 (by 20 µM MPP<sup>+</sup>) or hOCTN1 (by 40 µM ergothioneine). Data are given as percentage of uptake without inhibition. B) Specific Imatinib uptake, hMATE1 Western Blot and PCR in hRASF after transfection with hMATE1- or scrambled (scr)-siRNA for 72 and 192 hours. Number of transfections is given in brackets. C) Proliferation on hRASF quantified by cell counting after stimulation with PDGF in the presence and absence of Imatinib and the hMATE1 inhibitor pyrimethamine with number of transfections given in brackets. All values are mean ± SEM. * indicates statistically significant effects (P<0.05).</p
    corecore