7 research outputs found

    The inhibitory effect of progesterone on lactogenesis during pregnancy is already evident by mid- to late gestation in rodents

    Get PDF
    Lactogenesis is a very complex process highly dependent on hormonal regulation. In the present study the time-course of the inhibitory actions of progesterone on prolactin secretion, mammary gland morphology and lactogenesis from mid- to late gestation in rodents was investigated. Groups of pregnant rats were luteectomised or administered with mifepristone on Day 10, 13, 15 or 17 of gestation and decapitated 28 or 48h later. Whole-blood samples and the inguinal mammary glands were taken for determinations of hormone levels and for measurement of mammary content of casein and lactose and for tissue morphology analyses, respectively. Luteectomy or mifepristone evoked prolactin increases only after Day 17 of gestation. Mammary content of casein was increased by both treatments regardless of timing or duration. Mifepristone was less effective than luteectomy in inducing lactose production and the effect was only observed after Day 15 of gestation. Analysis of mammary gland morphology confirmed the observed effect of progesterone on lactogenesis. Both treatments triggered remarkable secretory activity in the mammary gland, even without a parallel epithelial proliferation, demonstrating that the mammary epithelium is able to synthesise milk compounds long before its full lobulo-alveolar development is achieved, provided that progesterone action is abolished. Thus, the present study demonstrates that progesterone is a potent hormonal switch for the prolactin and prolactin-like effects on mammary gland development and its milk-synthesising capacity during pregnancy, and that its inhibitory action is already evident by mid-pregnancy in rodents.Fil: López Fontana, Constanza Matilde. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Medicina y Biología Experimental de Cuyo; ArgentinaFil: Maselli, María Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Medicina y Biología Experimental de Cuyo; ArgentinaFil: Salicioni, Ana M.. University Of Massachusetts Amherst; Estados UnidosFil: Caron, Ruben Walter. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Medicina y Biología Experimental de Cuyo; Argentin

    The tyrosine kinase FER is responsible for the capacitation-associated increase in tyrosine phosphorylation in murine sperm

    Get PDF
    Sperm capacitation is required for fertilization. At the molecular level, this process is associated with fast activation of protein kinase A. Downstream of this event, capacitating conditions lead to an increase in tyrosine phosphorylation. The identity of the tyrosine kinase(s) mediating this process has not been conclusively demonstrated. Recent experiments using stallion and human sperm have suggested a role for PYK2 based on the use of small molecule inhibitors directed against this kinase. However, crucially, loss-of-function experiments have not been reported. Here, we used both pharmacological inhibitors and genetically modified mice models to investigate the identity of the tyrosine kinase(s) mediating the increase in tyrosine phosphorylation in mouse sperm. Similar to stallion and human, PF431396 blocks the capacitation-associated increase in tyrosine phosphorylation. Yet, sperm from Pyk2(-/-) mice displayed a normal increase in tyrosine phosphorylation, implying that PYK2 is not responsible for this phosphorylation process. Here, we show that PF431396 can also inhibit FER, a tyrosine kinase known to be present in sperm. Sperm from mice targeted with a kinase-inactivating mutation in Fer failed to undergo capacitation-associated increases in tyrosine phosphorylation. Although these mice are fertile, their sperm displayed a reduced ability to fertilize metaphase II-arrested eggs in vitro.Fil: Alvau, Antonio. University of Massachussets; Estados UnidosFil: Battistone, Maria Agustina. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Gervasi, Maria Gracia. University of Massachussets; Estados UnidosFil: Navarrete, Felipe A.. University of Massachussets; Estados UnidosFil: Xu, Xinran. State University of Colorado - Fort Collins; Estados UnidosFil: Sánchez Cárdenas, Claudia. Universidad Nacional Autónoma de México. Instituto de Biotecnología; MéxicoFil: De la Vega Beltran, José Luis. Universidad Nacional Autónoma de México. Instituto de Biotecnología; MéxicoFil: Da Ros, Vanina Gabriela. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Greer, Peter. Queens University; CanadáFil: Darszon, Alberto. Universidad Nacional Autónoma de México. Instituto de Biotecnología; MéxicoFil: Krapf, Diego. State University of Colorado - Fort Collins; Estados UnidosFil: Salicioni, Ana María. University of Massachussets; Estados UnidosFil: Cuasnicu, Patricia Sara. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Visconti, Pablo E.. University of Massachussets; Estados Unido

    TSSK3, a novel target for male contraception, is required for spermiogenesis

    Get PDF
    We have previously shown that members of the family of testis-specific serine/threonine kinases (TSSKs) are post-meiotically expressed in testicular germ cells and in mature sperm in mammals. The restricted post-meiotic expression of TSSKs as well as the importance of phosphorylation in signaling processes strongly suggest that TSSKs have an important role in germ cell differentiation and/or sperm function. This prediction has been supported by the reported sterile phenotype of the TSSK6 knock-out (KO) mice and of the double TSSK1/TSSK2 KO. The aim of this study was to develop KO mouse models of TSSK3 and to validate this kinase as a target for the development of a male contraceptive. We used CRISPR/Cas9 technology to generate the TSSK3 KO allele on B6D2F1 background mice. Male heterozygous pups were used to establish three independent TSSK3 KO lines. After natural mating of TSSK3 KO males, females that presented a plug (indicative of mating) were monitored for the following 24 days and no pregnancies or pups were found. Sperm numbers were drastically reduced in all three KO lines and, remarkably, round spermatids were detected in the cauda epididymis of KO mice. From the small population of sperm recovered, severe morphology defects were detected. Our results indicate an essential role of TSSK3 in spermiogenesis and support this kinase as a suitable candidate for the development of novel nonhormonal male contraceptives.Fil: Nayyab, Saman. University of Massachussets; Estados UnidosFil: Gervasi, María G.. University of Massachussets; Estados UnidosFil: Tourzani, Darya A.. University of Massachussets; Estados UnidosFil: Caraballo, Diego Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Ecología, Genética y Evolución de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Ecología, Genética y Evolución de Buenos Aires; ArgentinaFil: Jha, Kula N.. No especifíca;Fil: Teves, Maria E.. University of Virginia; Estados UnidosFil: Cui, Wei. University of Massachussets; Estados UnidosFil: Georg, Gunda I.. University of Minnesota; Estados UnidosFil: Visconti, Pablo E.. University of Massachussets; Estados UnidosFil: Salicioni, Ana M.. University of Massachussets; Estados Unido

    Human Sperm Remain Motile After a Temporary Energy Restriction but do Not Undergo Capacitation-Related Events

    Get PDF
    To acquire fertilization competence, mammalian sperm must undergo several biochemical and physiological modifications known as capacitation. Despite its relevance, the metabolic pathways that regulate the capacitation-related events, including the development of hyperactivated motility, are still poorly described. Previous studies from our group have shown that temporary energy restriction in mouse sperm enhanced hyperactivation, in vitro fertilization, early embryo development and pregnancy rates after embryo transfer, and it improved intracytoplasmic sperm injection results in the bovine model. However, the effects of starvation and energy recovery protocols on human sperm function have not yet been established. In the present work, human sperm were incubated for different periods of time in medium containing glucose, pyruvate and lactate (NUTR) or devoid of nutrients for the starving condition (STRV). Sperm maintained in STRV displayed reduced percentages of motility and kinematic parameters compared to cells incubated in NUTR medium. Moreover, they did not undergo hyperactivation and showed reduced levels of ATP, cAMP and protein tyrosine phosphorylation. Similar to our results with mouse sperm, starvation induced increased intracellular Ca2+ concentrations. Starved human sperm were capable to continue moving for more than 27 h, but the incubation with a mitochondrial uncoupler or inhibitors of oxidative phosphorylation led to a complete motility loss. When exogenous nutrients were added back (sperm energy recovery (SER) treatment), hyperactivated motility was rescued and there was a rise in sperm ATP and cAMP levels in 1 min, with a decrease in intracellular Ca2+ concentration and no changes in sperm protein tyrosine phosphorylation. The finding that human sperm can remain motile for several hours under starvation due to mitochondrial use of endogenous metabolites implies that other metabolic pathways may play a role in sperm energy production. In addition, full recovery of motility and other capacitation parameters of human sperm after SER suggests that this treatment might be used to modulate human sperm fertilizing ability in vitro

    Transient Sperm Starvation Improves the Outcome of Assisted Reproductive Technologies

    Get PDF
    To become fertile, mammalian sperm must undergo a series of biochemical and physiological changes known as capacitation. These changes involve crosstalk between metabolic and signaling pathways and can be recapitulated in vitro. In this work, sperm were incubated in the absence of exogenous nutrients (starved) until they were no longer able to move. Once immotile, energy substrates were added back to the media and sperm motility was rescued. Following rescue, a significantly higher percentage of starved sperm attained hyperactivated motility and displayed increased ability to fertilize in vitro when compared with sperm persistently incubated in standard capacitation media. Remarkably, the effects of this treatment continue beyond fertilization as starved and rescued sperm promoted higher rates of embryo development, and once transferred to pseudo-pregnant females, blastocysts derived from treated sperm produced significantly more pups. In addition, the starvation and rescue protocol increased fertilization and embryo development rates in sperm from a severely subfertile mouse model, and when combined with temporal increase in Ca2+ ion levels, this methodology significantly improved fertilization and embryo development rates in sperm of sterile CatSper1 KO mice model. Intracytoplasmic sperm injection (ICSI) does not work in the agriculturally relevant bovine system. Here, we show that transient nutrient starvation of bovine sperm significantly enhanced ICSI success in this species. These data reveal that the conditions under which sperm are treated impact postfertilization development and suggest that this “starvation and rescue method” can be used to improve assisted reproductive technologies (ARTs) in other mammalian species, including humans.Fil: Navarrete, Felipe A.. University of Massachussets; Estados UnidosFil: Aguila, Luis. University of Massachussets; Estados UnidosFil: Martin Hidalgo, David. University of Massachussets; Estados Unidos. Universidad de Extremadura ; EspañaFil: Tourzani, Darya A.. University of Massachussets; Estados UnidosFil: Luque, Guillermina Maria. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Ardestani, Goli. University of Massachussets; Estados UnidosFil: Garcia Vazquez, Francisco A.. Universidad de Murcia; EspañaFil: Levin, Lonny R.. Cornell University; Estados UnidosFil: Buck, Jochen. Cornell University; Estados UnidosFil: Darszon, Alberto. Universidad Nacional Autónoma de México. Instituto de Biología; MéxicoFil: Buffone, Mariano Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Instituto de Biología y Medicina Experimental. Fundación de Instituto de Biología y Medicina Experimental. Instituto de Biología y Medicina Experimental; ArgentinaFil: Mager, Jesse. University of Massachussets; Estados UnidosFil: Fissore, Rafael A.. University of Massachussets; Estados UnidosFil: Salicioni, Ana M.. University of Massachussets; Estados UnidosFil: Gervasi, María G.. University of Massachussets; Estados UnidosFil: Visconti, Pablo E.. University of Massachussets; Estados Unido

    The inhibitory effect of progesterone on lactogenesis during pregnancy is already evident by mid- to late gestation in rodents

    No full text
    Lactogenesis is a very complex process highly dependent on hormonal regulation. In the present study the time-course of the inhibitory actions of progesterone on prolactin secretion, mammary gland morphology and lactogenesis from mid- to late gestation in rodents was investigated. Groups of pregnant rats were luteectomised or administered with mifepristone on Day 10, 13, 15 or 17 of gestation and decapitated 28 or 48h later. Whole-blood samples and the inguinal mammary glands were taken for determinations of hormone levels and for measurement of mammary content of casein and lactose and for tissue morphology analyses, respectively. Luteectomy or mifepristone evoked prolactin increases only after Day 17 of gestation. Mammary content of casein was increased by both treatments regardless of timing or duration. Mifepristone was less effective than luteectomy in inducing lactose production and the effect was only observed after Day 15 of gestation. Analysis of mammary gland morphology confirmed the observed effect of progesterone on lactogenesis. Both treatments triggered remarkable secretory activity in the mammary gland, even without a parallel epithelial proliferation, demonstrating that the mammary epithelium is able to synthesise milk compounds long before its full lobulo-alveolar development is achieved, provided that progesterone action is abolished. Thus, the present study demonstrates that progesterone is a potent hormonal switch for the prolactin and prolactin-like effects on mammary gland development and its milk-synthesising capacity during pregnancy, and that its inhibitory action is already evident by mid-pregnancy in rodents.Fil: López Fontana, Constanza Matilde. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Medicina y Biología Experimental de Cuyo; ArgentinaFil: Maselli, María Eugenia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Medicina y Biología Experimental de Cuyo; ArgentinaFil: Salicioni, Ana M.. University Of Massachusetts Amherst; Estados UnidosFil: Caron, Ruben Walter. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza. Instituto de Medicina y Biología Experimental de Cuyo; Argentin
    corecore