30 research outputs found

    Role of hypoxia inducible factor HIF-1α in heart valves

    Get PDF
    The 2016 Albert Lasker Basic Medical Research Award and subsequently the 2019 Nobel Prize in Physiology or Medicine were awarded to William Kaelin, Jr., Sir Peter Ratcliffe, and Gregg Semenza for their work on how cells sense and adapt to hypoxic conditions. Their work showed that the changes in gene expression, cell metabolism, and tissue remodelling that occur in response to low oxygen concentrations are orchestrated by the transcription factor, hypoxia inducible factor-1α (HIF-1α). While the effects mediated by HIF-1α have been widely studied, its role in heart valves has only recently been investigated. These studies have shown that HIF-1α expression is evident in mechanisms that regulate the structure and function of heart valves. These include embryonic development, the regulation of the extracellular matrix, angiogenesis and the initiation of the calcification process. This review provides a background on the role and function of HIF-1α in response to hypoxia and a discussion of the available evidence of its involvement in the regulation of heart valves in health and disease

    Candidate plasma biomarkers for predicting ascending aortic aneurysm in bicuspid aortic valve disease.

    Get PDF
    BACKGROUND: Bicuspid aortic valve (BAV) disease is the most common congenital cardiac abnormality affecting 1-2% of the population and is associated with a significantly increased risk of ascending aortic aneurysm. However, predicting which patients will develop aneurysms remains a challenge. This pilot study aimed to identify candidate plasma biomarkers for monitoring ascending aortic diameter and predicting risk of future aneurysm in BAV patients. METHODS: Plasma samples were collected pre-operatively from BAV patients undergoing aortic valve surgery. Maximum ascending aortic diameter was measured on pre-operative transoesophageal echocardiography. Maximum diameter ≄ 45 mm was classified as aneurysmal. Sequential Window Acquisition of all THeoretical Mass Spectra (SWATH-MS), an advanced mass spectrometry technique, was used to identify and quantify all proteins within the samples. Protein abundance and aortic diameter were correlated using logistic regression. Levene's test was used to identify proteins demonstrating low abundance variability in the aneurysmal patients (consistent expression in disease), and high variability in the non-aneurysmal patients (differential expression between 'at risk' and not 'at risk' patients). RESULTS: Fifteen plasma samples were collected (seven non-aneurysmal and 8 aneurysmal BAV patients). The mean age of the patients was 55.5 years and the majority were female (10/15, 67%). Four proteins (haemoglobin subunits alpha, beta and delta and mannan-binding lectin serine protease) correlated significantly with maximal ascending aortic diameter (p < 0.05, r = 0.5-0.6). Five plasma proteins demonstrated significantly lower variability in the aneurysmal group and may indicate increased risk of aneurysm in non-aneurysmal patients (DNA-dependent protein kinase catalytic subunit, lumican, tetranectin, gelsolin and cartilage acidic protein 1). A further 7 proteins were identified only in the aneurysmal group (matrin-3, glucose-6-phosphate isomerase, coactosin-like protein, peptidyl-prolyl cis-trans isomerase A, golgin subfamily B member 1, myeloperoxidase and 2'-deoxynucleoside 5'-phosphate N-hydrolase 1). CONCLUSIONS: This study is the first to identify candidate plasma biomarkers for predicting aortic diameter and risk of future aneurysm in BAV patients. It provides valuable pilot data and proof of principle that could be used to design a large-scale prospective investigation. Ultimately, a more affordable 'off-the-shelf' follow-on blood assay could then be developed in place of SWATH-MS, for use in the healthcare setting

    Hypoxia-mediated regulation of the secretory properties of mitral valve interstitial cells

    No full text
    The sophisticated function of the mitral valve depends to a large extent on its extracellular matrix (ECM) and specific cellular components. These are tightly regulated by a repertoire of mechanical stimuli and biological pathways. One potentially important stimulus is hypoxia. The purpose of this investigation is to determine the effect of hypoxia on the regulation of mitral valve interstitial cells (MVICs) with respect to the synthesis and secretion of extracellular matrix proteins. Hypoxia resulted in reduced production of total collagen and sulfated glycosaminoglycans (sGAG) in cultured porcine MVICs. Increased gene expression of matrix metalloproteinases-1 and -9 and their tissue inhibitors 1 and 2 was also observed after incubation under hypoxic conditions for up to 24 h. Hypoxia had no effect on MVIC viability, morphology, or phenotype. MVICs expressed hypoxia-inducible factor (HIF)-1α under hypoxia. Stimulating HIF-1α chemically caused a reduction in the amount of sGAG produced, similar to the effect observed under hypoxia. Human rheumatic valves had greater expression of HIF-1α compared with normal or myxomatous degenerated valves. In conclusion, hypoxia affects the production of certain ECM proteins and expression of matrix remodeling enzymes by MVICs. The effects of hypoxia appear to correlate with the induction of HIF-1α. This study highlights a potential role of hypoxia and HIF-1α in regulating the mitral valve, which could be important in health and disease.NEW & NOTEWORTHY This study demonstrates that hypoxia regulates extracellular matrix secretion and the remodeling potential of heart valve interstitial cells. Expression of hypoxia-induced factor-1α plays a role in these effects. These data highlight the potential role of hypoxia as a physiological mediator of the complex function of heart valve cells

    Feasibility of a novel, synthetic, self-assembling peptide for suture-line haemostasis in cardiac surgery

    No full text
    Abstract Backgroud To assess the feasibility and efficacy of PuraStatÂź, a novel haemostatic agent, in achieving suture line haemostasis in a wide range of cardiac surgical procedures and surgery of the thoracic aorta. Methods A prospective, non-randomised study was conducted at our institution. Operative data on fifty consecutive patients undergoing cardiac surgery where PuraStatÂź was utilised in cases of intraoperative suture line bleeding was prospectively collected. Questionnaires encompassing multiple aspects of the ease of use and efficacy of PuraStatÂź were completed by ten surgeons (five consultants and five senior registrars) and analysed to gauge the performance of the product. Results No major adverse cardiac events were reported in this cohort. Complications such as atrial fibrillation, pacemaker requirement and pleural effusions were comparable to the national average. Mean blood product use of packed red cells, platelets, fresh-frozen plasma (FFP) and cryoprecipitate was below the national average. There was one incidence of re-exploration, however this was due to pericardial constriction rather than bleeding. Analysis of questionnaire responses revealed that surgeons consistently rated PuraStatÂź highly (between a score of 7 and 10 in the various subcategories). The transparent nature or PuraStatÂź allowed unobscured visualisation of suture sites and possessed excellent qualities in terms of adherence to site of application. The application of PuraStatÂź did not interfere with the use of other haemostatic agents or manipulation of the suture site by the surgeon. Conclusion PuraStatÂź is an easy-to-use and effective haemostatic agent in a wide range of cardiac and aortic surgical procedures

    Aortic Stenosis Prognostication in Patients With Type 2 Diabetes: Protocol for Testing and Validation of a Biomarker-Derived Scoring System

    No full text
    Background: Type 2 diabetes mellitus (T2DM) has been established as an important independent risk factor for aortic stenosis. T2DM patients present with a higher degree of valve calcification and left ventricular dysfunction compared to patients without diabetes. This may be due to an increase in incidence and severity of myocardial fibrosis. Currently, there is no reliable method of determining the optimal timing of intervention for a patient with asymptomatic aortic stenosis or predicting when a patient will become symptomatic. Research into serum biomarkers to predict subclinical onset and track progression of aortic stenosis is hampered by the multimodal nature of the pathological processes ultimately responsible for aortic stenosis.Objective: The aim of this study is to prove that an approach using a combination of serum biomarkers and the echocardiographic parameter global longitudinal strain (GLS) can be used to establish baseline status of fibrocalcific aortic valve disease, predict rate of progression, and quantitatively assess any regression of these processes following aortic valve replacement in patients with T2DM.Methods: Validated serum biomarkers for the separate processes of calcification, inflammation, oxidative stress and fibrosis can be used to quantify onset and rate of progression of aortic stenosis. This, in combination with the echocardiographic parameter GLS, can be compared with other objective investigations of calcification and fibrosis with the aim of developing a quick, noninvasive one-stop assessment of aortic stenosis in patients with T2DM. The serum biomarkers BNP (B-type natriuretic peptide), Gal-3 (Galectin-3), GDF-15 (growth differentiation factor-15), sST2 (soluble suppression of tumorigenicity 2), OPG (osteoprotegerin), and microRNA 19b and 21 will be sampled from patients undergoing aortic valve replacement (with and without T2DM), patients with T2DM but without aortic valve disease and healthy volunteers. These patients will also undergo computed tomography (CT) scans for calcium scoring, magnetic resonance imaging (MRI) to quantify myocardial fibrosis, and myocardial strain imaging with speckle-tracking echocardiography. Samples of calcified native aortic valve and a biopsy of ventricular myocardium will be examined histologically to determine the quantity and distribution of calcification and fibrosis, and the secretome of these tissue samples will also be analyzed for levels of the same biomarkers as in the serum samples. All patients will be followed up with in 3 months and 12 months for repeat blood sampling, echocardiography, and CT and MRI imaging to assess disease progression or regression. The results of tissue analysis and CT and MRI scanning will be used to validate the findings of the serum biomarkers and echocardiographic assessment.Results: Using all of the information gathered throughout the study will yield a ranking scale for use in the clinic, which will provide each patient with a fibrocalcific profile. This can then be used to recommend an optimal time for intervention.Conclusion: A reliable, validated set of serum biomarkers combined with an inexpensive bedside echocardiographic examination can now form the basis of a one-stop outpatient-based assessment service, which will provide an accurate risk assessment in patients with aortic stenosis at first contact

    Defective NOTCH signaling drives increased vascular smooth muscle cell apoptosis and contractile differentiation in bicuspid aortic valve aortopathy: a review of the evidence and future directions

    No full text
    Bicuspid aortic valve (BAV) disease remains the most common congenital cardiac disease and is associated with an increased risk of potentially fatal aortopathy including aortic aneurysm and dissection. Mutations in the NOTCH1 gene are one of only a few genetic anomalies identified in BAV disease; however evidence for defective NOTCH signaling, and its involvement in the characteristic histological changes of VSMC apoptosis and differentiation in ascending aortae of BAV patients is lacking. This review scrutinizes the evidence for the interactions of NOTCH signaling, cellular differentiation and apoptosis in the context of aortic VSMCs and provides focus for future research efforts in the diagnosis of BAV aortopathy and prevention of catastrophic complications through NOTCH signaling manipulation

    Diabetes management during cardiac surgery in the UK: a survey

    No full text
    AimTo determine current practice regarding the diabetes management of people undergoing cardiac surgery in the UK.MethodsWe conducted an online survey of UK cardiothoracic surgeons. All cardiothoracic surgeons listed in the Society of Cardiothoracic Surgery membership directory were invited to participate. The survey, compiled using SurveyMonkey software, comprised 15 closed and open‐ended questions about the management of people with diabetes pre‐ and peri‐operatively.ResultsSixty‐two cardiothoracic surgeons from all 33 UK cardiac centres completed the survey. Of these, 44% responded that they routinely measure HbA1c preoperatively for all patients, 19% had an HbA1c threshold above which they would not operate and 21% currently undertake a point‐of‐care HbA1c measurement during the cardiothoracic outpatient visit. A total of 74% of respondents reported that it was ‘easy’ or ‘very easy’ to obtain a diabetes team review; diabetes nurse specialists were the members of the diabetes team working most closely with cardiac surgeons. Up to a third of the surgeons did not provide physical activity recommendations prior to admission and over 80% did not have a different preoperative or surgical diabetes protocol. Inconsistency in the responses within centres suggests that differences in practice may depend on individual surgeons rather than local policy.ConclusionsThe study demonstrates there is only limited peri‐operative management of diabetes in people undergoing cardiac surgery in the UK. There is an opportunity for greater involvement of the diabetes specialist team both before and during admission for surgery to improve outcomes.(Trial registration: ISRCTN10170306)<br/
    corecore