11 research outputs found

    Association of immune responses of Zebu and Holstein-Friesian cattle and resistance to mycobacteria in a BCG challenge model

    Get PDF
    Mycobacterium bovis is the main cause of bovine tuberculosis (BTB) in cattle and can also infect humans. Zebu cattle are considered more resistant to some infectious diseases compared with Holstein‐Friesian (HF) cattle, including BTB. However, epidemiological studies may not take into account usage differences of the two types of cattle. HF cattle may suffer greater metabolic stress due to their more or less exclusive dairy use, whereas Zebu cattle are mainly used for beef production. In experiments conducted so far, the number of animals has been too small to draw statistically robust conclusions on the resistance differences between these cattle breeds. Here, we used a BCG challenge model to compare the ability of naïve and vaccinated Zebu and HF cattle to control/kill mycobacteria. Young cattle of both breeds with similar ages were housed in the same accommodation for the duration of the experiment. After correcting for multiple comparisons, we found no difference between naïve HF and Zebu (ρ = 0.862) cattle. However, there was a trend for vaccinated HF cattle to have lower cfu numbers than non‐vaccinated HF cattle (ρ = 0.057); no such trend was observed between vaccinated and non‐vaccinated Zebu cattle (ρ = 0.560). Evaluation of antigen‐specific IFNγ secretion by PBMC indicated that Zebu and HF cattle differed in their response to mycobacteria. Thus, whilst there may be difference in immune responses, our data indicate that with the number of animals included in the study and under the conditions used in this work, we were unable to measure any differences between Zebu and HF cattle in the overall control of mycobacteria. Whilst determination of different susceptibilities between Zebu and HF cattle using the BCG challenge model will require larger numbers of animals than the number of animals used in this experiment, these data should inform future experiments

    Clinical Utility of HeartLogic, a Multiparametric Telemonitoring System, in Heart Failure

    Get PDF
    Telemonitoring through multiple variables measured on cardiac devices has the potential to improve the follow-up of patients with heart failure. The HeartLogic algorithm (Boston Scientific), implemented in some implantable cardiac defibrillators and cardiac resynchronisation therapy, allows monitoring of the nocturnal heart rate, respiratory movements, thoracic impedance, physical activity and the intensity of heart tones, with the aim of predicting major clinical events. Although HeartLogic has demonstrated high sensitivity for the detection of heart failure decompensations, its effects on hospitalisation and mortality in randomised clinical trials has not yet been corroborated. This review details how the HeartLogic algorithm works, compiles available evidence from clinical studies, and discusses its application in daily clinical practice

    Histopathological and immunohistochemical characterisation of Burkholderia pseudomallei lesions in an acute model of infection with BALB/c mice

    No full text
    Organ tissue damage is a key contributor to host morbidity and mortality following infection with microbial agents. Severe immune responses, excessive cellular recruitment and necrosis of cells all play a role in disease pathology. Understanding the pathogenesis of disease can aid in identifying potential new therapeutic targets or simply act as a diagnostic tool. Burkholderia pseudomallei is a gram-negative bacterium that can cause acute and chronic diseases. The BALB/c mouse has been shown to be highly susceptible to aerosol challenge with B. pseudomallei and hence acts as a good model to study the acute and potentially lethal form of the disease melioidosis. In our study, BALB/c mice were challenged and culled at pre-determined time points to generate a pathological time course of infection. Lung, liver and spleen were subjected to pathological and immunohistochemical analysis. The number and type of microscopic lesions within each organ, as well as the location and the mean percentage of neutrophils, B cells, T cells and Burkholderia capsule antigen within the lesions were all characterised during the time course. Neutrophils were determined as the key player in tissue pathology and generation of lesions, with B cells playing an insignificant role. This detailed pathological assessment increases our understanding of B. pseudomallei disease

    Differential cell composition and cytokine expression within lymph node granulomas from BCG vaccinated and non-vaccinated cattle experimentally infected with Mycobacterium bovis

    No full text
    Cattle vaccination against bovine tuberculosis (bTB) has been proposed as a supplementary method to help control the incidences of this disease. Bacillus Calmette-Guérin (BCG) is currently the only viable candidate vaccine for immunisation of cattle against bTB, caused by Mycobacterium bovis (M. bovis). In an attempt to characterise the differences in the immune response following M. bovis infection between BCG vaccinated and non-vaccinated animals, a combination of gross pathology, histopathology and immunohistochemical (IHC) analyses was used. BCG vaccination was found to significantly reduce the number of gross and microscopic lesions present within the lungs and lymph nodes. Additionally, the microscopically visible bacterial load of stage III and IV granulomas was reduced. IHC using cell surfaces markers revealed the number of CD68+ (macrophages), CD3+ (T-lymphocytes) and WC1+ cells (γδ T-cells) to be significantly reduced in lymph node granulomas of BCG vaccinated animals, when compared to non-vaccinated animals. B lymphocytes (CD79a+) were significantly increased in BCG-vaccinated cattle for granulomas at stages II, III and IV. IHC staining for iNOS showed a higher expression in granulomas from BCG vaccinated animals compared to non-vaccinated animals for all stages, being statistically significant in stages I and IV. TGFβ expression decreased alongside the granuloma development in non-vaccinated animals, whereas BCG vaccinated animals showed a slight increase alongside lesion progression. IHC analysis of the cytokines IFN-γ and TNFα demonstrated significantly increased expression within the lymph node granulomas of BCG vaccinated cattle. This is suggestive of a protective role for IFNγ and TNFα in the response to M. bovis infection. Findings shown in this study suggest that the use of BCG vaccine, can reduce the number and severity of lesions , induce a different phenotypic response and increase the local expression of key cytokines related to protection

    Thymic depletion of lymphocytes is associated with the virulence of PRRSV-1 strains

    No full text
    Porcine reproductive and respiratory syndrome virus (PRRSV) exists as two distinct viruses, type 1 (PRRSV-1) and type 2 (PRRSV-2). Atrophy of the thymus in PRRSV-2 infected piglets has been associated with a loss of thymocytes. The present study aimed to evaluate the impact of PRRSV-1 strains of differing virulence on the thymus of infected piglets by analysing the histomorphometry, the presence of apoptotic cells and cells producing cytokines. Thymic samples were taken from animals experimentally infected (with LV, SU1-bel, and 215-06 strains) or mock inoculated animals at 3, 7 and 35 days post-infection (dpi) and processed for histopathological and immunohistochemical analyses. PRRSV antigen was detected in the thymus from 3dpi until the end of the study in all virus-infected animals with the highest numbers of infected cells detected in SU1-bel group. The histomorphometry analysis and counts of CD3+ thymocytes in the thymic cortex displayed significant differences between strains at different time-points (p ≤ 0.011), with SU1-bel group showing the most severe changes at 7dpi. Cell death displayed statistically significant increase in the cortex of all infected animals, with SU1-bel group showing the highest rate at 3 and 7dpi. The number of cells immunostained against IL-1α, TNF-α and IL-10 were predominantly detected in the medulla (p ≤ 0.01). An increase in the number of TNF-α and IL-10 positive cells was observed in LV and SU-1bel groups. Our results demonstrate that different PRRSV-1 strains induced depletion of the thymic cortex due to apoptosis of thymocytes and that the most severe depletion was associated with the highly virulent SU1-bel strain

    Porcine reproductive and respiratory syndrome type 1 viruses induce hypoplasia of erythroid cells and myeloid cell hyperplasia in the bone marrow of experimentally infected piglets independently of the viral load and virulence

    No full text
    Porcine reproductive and respiratory syndrome viruses (PRRSV) present a wide phenotypic and genetic diversity. Experimental infections have demonstrated viral replication, including highly pathogenic strains (HP-PRRSV), in primary lymphoid organs such as the thymus. However, studies of the bone marrow are scarce but necessary to help elucidate the immunobiology of PRRSV strains of differing virulence. In this study, whereas viral RNA was detected within the bone marrow of animals experimentally infected with both low virulent Lelystad (LV) and 215-06 PRRSV-1 strains and with the highly virulent SU1-bel strain, PRRSV positive cells were only occasionally detected in one SU1-bel infected animal. PRRSV RNA levels were associated to circulating virus with the highest levels detected in LV-infected pigs. At 3 dpi, a decrease in the proportion of haematopoietic tissue and number of erythroid cells in all infected groups was associated with an increase in TUNEL or cleaved caspase 3 labelling and higher counts of myeloid cells compared to control. The expression of IL-1α and IL-6 was elevated at the beginning of the infection in all infected animals. The expression of TNF-α was increased at the end of the study in all infected groups with respect to control. Different PRRSV-1 strains induced, presummably by indirect mechanisms and independently of viral load and strain virulence, moderate and sustained hypoplasia of erythroid cells and myeloid cell hyperplasia at early stages of infection. These changes were paralleled by a peak in the local expression of IL-1α, IL-6 and TNF-α in all infected groups

    Clinical characteristics and determinants of the phenotype in TMEM43 arrhythmogenic right ventricular cardiomyopathy type 5.

    Get PDF
    Arrhythmogenic right ventricular cardiomyopathy type V (ARVC-5) is the most aggressive heterozygous form of ARVC. It is predominantly caused by a fully penetrant mutation (p.S358L) in the nondesmosomal gene TMEM43-endemic to Newfoundland, Canada. To date, all familial cases reported worldwide share a common ancestral haplotype. It is unknown whether the p.S358L mutation by itself causes ARVC-5 or whether the disease is influenced by genetic or environmental factors. The purpose of this study was to examine the phenotype, clinical course, and the impact of exercise on patients with p.S358L ARVC-5 without the Newfoundland genetic background. We studied 62 affected individuals and 73 noncarriers from 3 TMEM43-p.S358L Spanish families. The impact of physical activity on the phenotype was also evaluated. Haplotype analysis revealed that the 3 Spanish families were unrelated to patients with ARVC-5 with the Newfoundland genetic background. Two families shared 10 microsatellite markers in a 4.9 cM region surrounding TMEM43; the third family had a distinct haplotype. The affected individuals showed a 38.7% incidence of sudden cardiac death, which was higher in men. Left ventricular involvement was common, with 40% of mutation carriers showing a left ventricular ejection fraction of <50%. Compared with noncarriers, the R-wave voltage in lead V3 was lower (3.2 ± 2.8 mV vs 7.5 ± 3.6 mV; P < .001) and QRS complex in right precordial leads wider (104.7 ± 24.0 ms vs 88.2 ± 7.7 ms; P = .001). A history of vigorous exercise showed a trend toward more ventricular arrhythmias only in women (P = .053). ARVC-5 is associated with a high risk of sudden cardiac death and characteristic clinical and electrocardiographic features irrespective of geographical origin and genetic background. Our data suggest that, as in desmosomal ARVC, vigorous physical activity could aggravate the phenotype of TMEM43 mutation carriers.This work was supported by grants from the Instituto de Salud Carlos III (PI14/0967 and PI17/1941, CPII14/00027, PI14/01477, PI18/0158 and La Fe Biobank PT17/0015/0043), the Isabel Gemio Foundation, the Spanish Society of Cardiology (2014 Basic Research Grant), the European Union (CardioNeTITN-289600 and CardioNext-608027), and from the Spanish Ministry of Economy and Competitiveness (RTI2018-096961-B-I00, SAF2015-65722-R, and SAF2012-31451). This work was also supported by the Plan Estatal de I1D1I 2013-2016 – European Regional Development Fund (FEDER) “AWay ofMaking Europe,” Spain. The Centro Nacional de Investigaciones Cardiovasculares (CNIC) is supported by the Instituto de Salud Carlos III (ISCIII), the Ministerio de Ciencia, Innovación y Universidades (MCNU), and the ProCNIC Foundation and is a Severo Ochoa Center of Excellence (SEV-2015-0505)S

    The effect of oral vaccination with Mycobacterium bovis BCG on the development of tuberculosis in captive European badgers (Meles meles)

    No full text
    The European badger (Meles meles) is a reservoir host of Mycobacterium bovis and responsible for a proportion of the tuberculosis (TB) cases seen in cattle in the United Kingdom and Republic of Ireland. An injectable preparation of the bacillus Calmette-Guérin (BCG) vaccine is licensed for use in badgers in the UK and its use forms part of the bovine TB eradication plans of England and Wales. However, there are practical limitations to the widespread application of an injectable vaccine for badgers and a research priority is the development of an oral vaccine deliverable to badgers in bait. Previous studies reported the successful vaccination of badgers with oral preparations of 108 colony forming units (CFU) of both Pasteur and Danish strains of BCG contained within a lipid matrix composed of triglycerides of fatty acids. Protection against TB in these studies was expressed as a reduction in the number and apparent progression of visible lesions, and reductions in the bacterial load and dissemination of infection. To reduce the cost of an oral vaccine and reduce the potential for environmental contamination with BCG, it is necessary to define the minimal efficacious dose of oral BCG for badgers. The objectives of the two studies reported here were to compare the efficacy of BCG Danish strain in a lipid matrix with unformulated BCG given orally, and to evaluate the efficacy of BCG Danish in a lipid matrix at a ten-fold lower dose than previously evaluated in badgers. In the first study, both BCG unformulated and in a lipid matrix reduced the number and apparent progression of visible lesions and the dissemination of infection from the lung. In the second study, vaccination with BCG in the lipid matrix at a ten-fold lower dose produced a similar outcome, but with greater intra-group variability than seen with the higher dose in the first study. Further research is needed before we are able to recommend a final dose of BCG for oral vaccination of badgers against TB or to know whether oral vaccination of wild badgers with BCG will significantly reduce transmission of the disease

    The impact of COVID‐19 pandemic on pulmonary hypertension: What have we learned?

    No full text
    Abstract The coronavirus 2019 disease (COVID‐19) pandemic threatened the Spanish health‐care system. Patients with demanding conditions such as precapillary pulmonary hypertension (PH) faced a potentially severe infection, while their usual access to medical care was restricted. This prospective, unicentric study assessed the impact of COVID‐19 on PH patients' outcomes and the operational changes in the PH network. Sixty‐three PH patients (41 pulmonary arterial hypertension [PAH]; 22 chronic thromboembolic pulmonary hypertension [CTEPH]) experienced COVID‐19. Overall mortality was 9.5% without differences when stratifying by hemodynamics or PAH‐risk score. Patients who died were older (73.6 ± 5 vs. 52.2 ± 15.4; p = 0.001), with more comorbidities (higher Charlson index: 4.17 ± 2.48 vs. 1.14 ± 1.67; p = 0.0002). Referrals to the PH expert center decreased compared to the previous 3 years (123 vs. 160; p = 0.002). The outpatient activity shifted toward greater use of telemedicine. Balloon pulmonary angioplasty activity could be maintained after the first pandemic wave and lockdown while pulmonary thromboendarterectomy procedures decreased (19 vs. 36; p = 0.017). Pulmonary transplantation activity remained similar. The COVID‐19 mortality in PAH/CTEPH patients was not related to hemodynamic severity or risk stratification, but to comorbidities. The pandemic imposed structural changes but a planned organization and resource reallocation made it possible to maintain PH patients' care

    Correction to: Comparative effectiveness and safety of non-vitamin K antagonists for atrial fibrillation in clinical practice: GLORIA-AF Registry

    No full text
    International audienceIn this article, the name of the GLORIA-AF investigator Anastasios Kollias was given incorrectly as Athanasios Kollias in the Acknowledgements. The original article has been corrected
    corecore