103 research outputs found

    Verification results for the Spectral Ocean Wave Model (SOWM) by means of significant wave height measurements made by the GEOS-3 spacecraft

    Get PDF
    Significant wave heights estimated from the shape of the return pulse wave form of the altimeter on GEOS-3 for forty-four orbit segments obtained during 1975 and 1976 are compared with the significant wave heights specified by the spectral ocean wave model (SOWM), which is the presently operational numerical wave forecasting model at the Fleet Numerical Weather Central. Except for a number of orbit segments with poor agreement and larger errors, the SOWM specifications tended to be biased from 0.5 to 1.0 meters too low and to have RMS errors of 1.0 to 1.4 meters. The much fewer larger errors can be attributed to poor wind data for some parts of the Northern Hemisphere oceans. The bias can be attributed to the somewhat too light winds used to generate the waves in the model. Other sources of error are identified in the equatorial and trade wind areas

    Vector wind, horizontal divergence, wind stress and wind stress curl from SEASAT-SASS at one degree resolution

    Get PDF
    Conventional data obtained in 1983 are contrasted with SEASAT-A scatterometer and scanning multichannel microwave radiometer (SMMR) data to show how observations at a single station can be extended to an area of about 150,000 square km by means of remotely sensed data obtained in nine minutes. Superobservations at a one degree resolution for the vector winds were estimated along with their standard deviations. From these superobservations, the horizontal divergence, vector wind stress, and the curl of the wind stress can be found. Weather forecasting theory is discussed and meteorological charts of the North Pacific Ocean are presented. Synoptic meteorology as a technique is examined

    Synoptic scale wind field properties from the SEASAT SASS

    Get PDF
    Dealiased SEASAT SEASAT A Scatterometer System SASS vector winds obtained during the Gulf Of Alaska SEASAT Experiment GOASEX program are processed to obtain superobservations centered on a one degree by one degree grid. The grid. The results provide values for the combined effects of mesoscale variability and communication noise on the individual SASS winds. These superobservations winds are then processed further to obtain estimates of synoptic scale vector winds stress fields, the horizontal divergence of the wind, the curl of the wind stress and the vertical velocity at 200 m above the sea surface, each with appropriate standard deviations of the estimates for each grid point value. They also explain the concentration of water vapor, liquid water and precipitation found by means of the SMMR Scanning Multichannel Microwave Radiometer at fronts and occlusions in terms of strong warm, moist air advection in the warm air sector accompanied by convergence in the friction layer. Their quality is far superior to that of analyses based on conventional data, which are shown to yield many inconsistencies

    Towards visualisation of central-cell-effects in scanning-tunnelling-microscope images of subsurface dopant qubits in silicon

    Full text link
    Atomic-scale understanding of phosphorous donor wave functions underpins the design and optimisation of silicon based quantum devices. The accuracy of large-scale theoretical methods to compute donor wave functions is dependent on descriptions of central-cell-corrections, which are empirically fitted to match experimental binding energies, or other quantities associated with the global properties of the wave function. Direct approaches to understanding such effects in donor wave functions are of great interest. Here, we apply a comprehensive atomistic theoretical framework to compute scanning tunnelling microscopy (STM) images of subsurface donor wave functions with two central-cell-correction formalisms previously employed in the literature. The comparison between central-cell models based on real-space image features and the Fourier transform profiles indicate that the central-cell effects are visible in the simulated STM images up to ten monolayers below the silicon surface. Our study motivates a future experimental investigation of the central-cell effects via STM imaging technique with potential of fine tuning theoretical models, which could play a vital role in the design of donor-based quantum systems in scalable quantum computer architectures.Comment: Nanoscale 201

    Interface-induced heavy-hole/light-hole splitting of acceptors in silicon

    Full text link
    The energy spectrum of spin-orbit coupled states of individual sub-surface boron acceptor dopants in silicon have been investigated using scanning tunneling spectroscopy (STS) at cryogenic temperatures. The spatially resolved tunnel spectra show two resonances which we ascribe to the heavy- and light-hole Kramers doublets. This type of broken degeneracy has recently been argued to be advantageous for the lifetime of acceptor-based qubits [Phys. Rev. B 88 064308 (2013)]. The depth dependent energy splitting between the heavy- and light-hole Kramers doublets is consistent with tight binding calculations, and is in excess of 1 meV for all acceptors within the experimentally accessible depth range (< 2 nm from the surface). These results will aid the development of tunable acceptor-based qubits in silicon with long coherence times and the possibility for electrical manipulation
    corecore