379 research outputs found
Cross-Linked Hyaluronan Derivatives in the Delivery of Phycocyanin
An easy and viable crosslinking technology, based on the âclick-chemistryâ reaction copper(I)-catalyzed azide-alkyne 1,3-dipolar cycloaddition (click-crosslinking), was applied to graft copolymers of medium molecular weight (i.e., 270 kDa) hyaluronic acid (HA) grafted with ferulic acid (FA) residues bearing clickable propargyl groups, as well as caffeic acid derivatives bearing azido-terminated oligo(ethylene glycol) side chains. The obtained crosslinked materials were characterized from the point of view of their structure and aggregation liability to form hydrogels in a water environment. The most promising materials showed interesting loading capability regarding the antioxidant agent phycocyanin (PC). Two novel materials complexes (namely HA(270)-FA-TEGEC-CL-20/PC and HA(270)-FA-HEGEC-CL-20/PC) were obtained with a drug-to-material ratio of 1:2 (w/w). Zeta potential measurements of the new complexes (â1.23 mV for HA(270)-FA-TEGEC-CL-20/PC and â1.73 mV for HA(270)-FA-HEGEC-CL-20/PC) showed alterations compared to the zeta potential values of the materials on their own, suggesting the achievement of drugâmaterial interactions. According to the in vitro dissolution studies carried out in different conditions, novel drug delivery systems (DDSs) were obtained with a variety of characteristics depending on the desired route of administration and, consequently, on the pH of the surrounding environment, thanks to the complexation of phycocyanin with these two new crosslinked materials. Both complexes showed excellent potential for providing a controlled/prolonged release of the active pharmaceutical ingredient (API). They also increased the amount of drug that reach the target location, enabling pH-dependent release. Importantly, as demonstrated by the DPPH free radical scavenging assay, the complexation process, involving freezing and freeze-drying, showed no adverse effects on the antioxidant activity of phycocyanin. This activity was preserved in the two novel materials and followed a concentration-dependent pattern similar to pure PC
Demonstrating a smart controller in a hospital integrated energy system
Integrated energy systems have recently gained primary importance in clean energy transition. The combination of the electricity, heating and gas sectors can improve the overall system efficiency and integration of renewables by exploiting the synergies among the energy vectors. In particular, real-time optimization tools based on Model Predictive Control (MPC) can considerably improve the performance of systems with several conversion units and distribution networks by automatically coordinating all interacting technologies. Despite the relevance of several simulation studies on the topic, however, it is significantly harder to have an experimental demonstration of this improvement. This work presents a methodology for the real-world implementation of a novel smart control strategy for integrated energy systems, based on two coordinated MPC levels, which optimize the operation of all conversion units and all energy vectors in the short- and long-term, respectively, to account also for economic incentives on critical units. The strategy that was previously developed and evaluated in a simulation environment has now been implemented, as a supervisory controller, in the integrated energy system of a hospital in Italy. The optimal control logic is easily actuated by dynamically communicating the optimal set-points to the existing Building Management System, without having to alter the system configuration. Field data collected over a two-year period, firstly when it was business as usual and when the new operation was introduced, show that the MPC increased the economic margin and revenues from yearly incentives and lowered the amount of electricity purchased, reducing dependency on the power grid
Proteomic analysis of proteins responsive to drought and low temperature stress in a hard red spring wheat cultivar
Drought stress is becoming more prevalent with global warming, and has been shown to have large effects on gluten proteins linked to wheat bread making quality. Likewise, low temperature stress can detrimentally affect proteins in wheat. This study was done to determine the differential abundance of high molecular weight (HMW) glutenin proteins in a drought and low temperature stressed high quality hard red spring wheat cultivar (PAN3478), against a control. The treatments were applied in the greenhouse at the soft dough stage. HMW glutenin proteins were extracted from the flour, and were separated by using two-dimensional gel electrophoresis. Protein spots that had p values lower than 0.05 and fold values equal to or greater than 1.2 were considered to be significantly differentially abundant. These proteins were further analyzed by using tandem mass spectrometry. There was a 1.3 to 1.8 fold change in 17 protein spots due to the cold treatment. The drought treatment caused a 1.3 to 3.8 fold change in 19 protein spots. These spots matched either HMW or low molecular weight (LMW) glutenin subunits. In the latter case, the C subunits of LMW glutenins were notably found to be up-regulated under both stress conditions. All the proteins that have been identified can directly influence dough characteristics. Data are available via ProteomeXchange with the identifier PXD017578
Non-Coding RNA and Tumor Development in Neurofibromatosis Type 1: ANRIL Rs2151280 Is Associated with Optic Glioma Development and a Mild Phenotype in Neurofibromatosis Type 1 Patients
Non-coding RNAs (ncRNAs) are known to regulate gene expression at the transcriptional and post-transcriptional levels, chromatin remodeling, and signal transduction. The identification of different species of ncRNAs, microRNAs (miRNAs), circular RNAs (circRNAs), and long ncRNAs (lncRNAs)-and in some cases, their combined regulatory function on specific target genes-may help to elucidate their role in biological processes. NcRNAs' deregulation has an impact on the impairment of physiological programs, driving cells in cancer development. We here carried out a review of literature concerning the implication of ncRNAs on tumor development in neurofibromatosis type 1 (NF1), an inherited tumor predisposition syndrome. A number of miRNAs and a lncRNA has been implicated in NF1-associated tumors, such as malignant peripheral nerve sheath tumors (MPNSTs) and astrocytoma, as well as in the pathognomonic neurofibromas. Some authors reported that the lncRNA ANRIL was deregulated in the blood of NF1 patients with plexiform neurofibromas (PNFs), even if its role should be further elucidated. We here provided original data concerning the association of a specific genotype about ANRIL rs2151280 with the presence of optic gliomas and a mild expression of the NF1 phenotype. We also detected the LOH of ANRIL in different tumors from NF1 patients, supporting the involvement of ANRIL in some NF1-associated tumors. Our results suggest that ANRIL rs2151280 may be a potential diagnostic and prognostic marker, addressing early diagnosis of optic glioma and predicting the phenotype severity in NF1 patients
Thermal, electric and durability characterization of supercaps for energy back-up of automotive ECU
A new generation of mechatronic devices, such as the E-latch for door closure, is introduced in the automotive field to replace mechanical systems with electro-actuated parts with embedded electronic control unit (ECU) connected to the main vehicle network. Due to severe automotive safety-critical requirements an energy back-up solution is proposed, based on supercaps and boost converter, to ensure E-latch operation even in case of main battery failure. An in-depth thermal, electrical and durability characterization of the supercaps proves the suitability of the energy back-up unit for automotive applications
Ferulated Poly(vinyl alcohol) based hydrogels
New graft copolymers were prepared by reaction of poly (vinyl alcohol) (PVA) with mono-imidazolide or bis-imidazolide derivatives of ferulic acid (FA) with the formation of ester bonds. The obtained graft copolymers, thanks to the crosslinking capability of FA, formed in water strong gels as verified by rheological analyses. The resulting hydrogels were characterized to evaluate their applicability as wound dressing. In this perspective, their capability to absorb and retain a large amount of fluid without dissolving was verified by swelling kinetics and Moisture Vapour Transmission Rate measurements. Their stability towards mechanical solicitations was assessed by quantifying elasticity, compliance, stress-relaxation, and adhesivity properties. The analyses pointed out that hydrogel PVA-FA2-3 obtained by feruloylation of PVA with bis-imidazole derivative of ferulic acid using an acylation agent/polymer molar ratio 0.03/1 resulted the best candidate for the foreseen application
A Facile Access to Green Fluorescent Albumin Derivatives
A Morita-Baylis-Hillman Adduct (MBHA) derivative bearing a triphenylamine moiety was found to react with human serum albumin (HSA) shifting its emission from the blue to the green-yellow thus leading to green fluorescent albumin (GFA) derivatives and enlarging the platform of probes for aggregation-induced fluorescent-based detection techniques. A possible interaction of MBHA derivative 7 with a lipophilic pocket within the HSA structure was suggested by docking studies. DLS experiments showed that the reaction with HSA induce a conformational change of the protein contributing to the aggregation process of GFA derivatives. The results of investigations on the biological properties suggested that GFA retained the ability of binding drug molecules such as warfarin and diazepam. Finally, cytotoxicity evaluation studies suggested that, although the MBHA derivative 7 at 0.1 ÎŒg/mL affected the percentage of cell viability in comparison to the negative control, it cannot be considered cytotoxic, whereas at all the other concentrationsâ„0.5 ÎŒg/mL resulted cytotoxic at different extent
Spontaneous polymerization of benzofulvene monomers bearing a 4-Pyri- dylacetylene substituent in different positions of the benzofulvene scaffold
Two benzofulvene derivatives bearing a 4-pyridylacetylene substituent in different positions (i. e. 2 and 6) of the benzofulvene scaffold are designed and synthesized to evaluate the effects on the spontaneous solid-state polymerization of the presence of the same substituent in two different key positions of the 3-phenylbenzoful-vene moiety. Both the benzofulvene derivatives showed the tendency to polymerize spontaneously in the consequence of solvent removal under reduced pressure without the addition of catalysts or initiators. The macromolecular structure of the stemming polymeric materials was investigated by NMR spectroscopy and MALDI-TOF mass spectrometry. Both NMR and MALDI-TOF studies confirmed the polymeric nature of the materials and suggested for the polybenzofulvene derivative bearing the 4-pyridylacetylene substituent in po-sitions 6 a higher structural homogeneity with respect to the one bearing the same substituent in position 2. The photophysical characterization of the most homogeneous polybenzofulvene derivative led to the discovery of its outstanding hole mobility value, which was found to be around one order of magnitude higher than that pre-viously measured for two oligothiophene-based polybenzofulvene derivatives and almost two orders of magni-tude higher than that of poly(vinylcarbazole), commonly used as hole-transporter matrix. This result places the new polybenzofulvene derivative in an outstanding position as a promising material for field-effect transistor (FET) device applications
- âŠ