17 research outputs found

    Amyloidosis in familial Mediterranean fever patients: correlation with MEFV genotype and SAA1 and MICA polymorphisms effects

    Get PDF
    BACKGROUND: Familial mediterranean fever (FMF) is a recessively inherited disease characterized by recurrent crises of fever, abdominal, articular and/or thoracic pain. The most severe complication is the development of renal amyloidosis. Over 35 mutations have been discovered so far in the gene responsible for the disease, MEFV. This article aims at determining a correlation between the MEFV genotype and the occurence of amyloidosis in FMF patients, in addition to the study of the modifying effects of the SAA1 (type 1 serum amyloid A protein) and MICA (Major Histocompatibility Complex (MHC) class-I-chain-related gene A) genes on this severe complication. METHODS: Fourteen MEFV mutations were screened and the SAA1 and MICA polymorphisms tested in 30 FMF patients with amyloidosis and 40 FMF patients without amyloidosis. RESULTS: The M694V and V726A allelic frequencies were, respectively, significantly higher and lower in the group with amyloidosis, compared to the control FMF group. The beta and gamma SAA1 alleles were more frequently encountered in the group without amyloidosis, whereas the alpha allele was significantly more observed in FMF patients with amyloidosis (p < 0.025). All the MICA alleles were encountered in both patients' groups, but none of them was significantly associated with amyloidosis. CONCLUSIONS: The results suggest a protective effect of the SAA1 beta and gamma alleles on the development of amyloidosis and show the absence of a MICA modifying effect on amyloidosis development. Testing these polymorphisms on a larger sample will lead to more definite conclusions

    Contribution of copy number variants (CNVs) to congenital, unexplained intellectual and developmental disabilities in Lebanese patients

    Get PDF
    International audienceBackground: Chromosomal microarray analysis (CMA) is currently the most widely adopted clinical test for patients with unexplained intellectual disability (ID), developmental delay (DD), and congenital anomalies. Its use has revealed the capacity to detect copy number variants (CNVs), as well as regions of homozygosity, that, based on their distribution on chromosomes, indicate uniparental disomy or parental consanguinity that is suggestive of an increased probability of recessive disease. Results: We screened 149 Lebanese probands with ID/DD and 99 healthy controls using the Affymetrix Cyto 2.7 M and SNP6.0 arrays. We report all identified CNVs, which we divided into groups. Pathogenic CNVs were identified in 12.1% of the patients. We review the genotype/phenotype correlation in a patient with a 1q44 microdeletion and refine the minimal critical regions responsible for the 10q26 and 16q monosomy syndromes. Several likely causative CNVs were also detected, including new homozygous microdeletions (9p23p24.1, 10q25.2, and 8p23.1) in 3 patients born to consanguineous parents, involving potential candidate genes. However, the clinical interpretation of several other CNVs remains uncertain, including a microdeletion affecting ATRNL1. This CNV of unknown significance was inherited from the patient's unaffected-mother; therefore, additional ethnically matched controls must be screened to obtain enough evidence for classification of this CNV. Conclusion: This study has provided supporting evidence that whole-genome analysis is a powerful method for uncovering chromosomal imbalances, regardless of consanguinity in the parents of patients and despite the challenge presented by analyzing some CNVs

    A mutation in OTOF, encoding otoferlin, a FER-1-like protein, causes DFNB9, a nonsyndromic form of deafness

    No full text
    International audienceUsing a candidate gene approach, we identified a novel human gene, OTOF, underlying an autosomal recessive, nonsyndromic prelingual deafness, DFNB9. The same nonsense mutation was detected in four unrelated affected families of Lebanese origin. OTOF is the second member of a mammalian gene family related to Caenorhabditis elegans fer-1. It encodes a predicted cytosolic protein (of 1,230 aa) with three C2 domains and a single carboxy-terminal transmembrane domain. The sequence homologies and predicted structure of otoferlin, the protein encoded by OTOF, suggest its involvement in vesicle membrane fusion. In the inner ear, the expression of the orthologous mouse gene, mainly in the sensory hair cells, indicates that such a role could apply to synaptic vesicles

    Prevalance of BRCA1 and BRCA2 mutations in familial breast cancer patients in Lebanon

    Get PDF
    Breast cancer is the most prevalent malignancy in women in Western countries, currently accounting for one third of all female cancers. Familial aggregation is thought to account for 5–10 % of all BC cases, and germline mutations in BRCA1 and BRCA2 account for less of the half of these inherited cases. In Lebanon, breast cancer represents the principal death-causing malignancy among women, with 50 % of the cases diagnosed before the age of 50 years. In order to study BRCA1/2 mutation spectra in the Lebanese population, 72 unrelated patients with a reported family history of breast and/or ovarian cancers or with an early onset breast cancer were tested. Fluorescent direct sequencing of the entire coding region and intronic sequences flanking each exon was performed. A total of 38 BRCA1 and 40 BRCA2 sequence variants were found. Seventeen of them were novel. Seven confirmed deleterious mutations were identified in 9 subjects providing a frequency of mutations of 12.5 %. Fifteen variants were considered of unknown clinical significance according to BIC and UMD-BRCA1/BRCA2 databases. In conclusion, this study represents the first evaluation of the deleterious and unclassified genetic variants in the BRCA1/2 genes found in a Lebanese population with a relatively high risk of breast cancer

    A defect in harmonin, a PDZ domain-containing protein expressed in the inner ear sensory hair cells, underlies Usher syndrome type 1C

    No full text
    Usher syndrome type 1 (USH1) is an autosomal recessive sensory defect involving congenital profound sensorineural deafness, vestibular dysfunction and blindness (due to progressive retinitis pigmentosa). Six different USH1 loci have been reported. So far, only MYO7A (USH1B), encoding myosin VIIA (ref. 2), has been identified as a gene whose mutation causes the disease. Here, we report a gene underlying USH1C (MIM 276904), a USH1 subtype described in a population of Acadian descendants from Louisiana and in a Lebanese family. We identified this gene (USH1C), encoding a PDZ-domain–containing protein, harmonin, in a subtracted mouse cDNA library derived from inner ear sensory areas. In patients we found a splice-site mutation, a frameshift mutation and the expansion of an intronic variable number of tandem repeat (VNTR). We showed that, in the mouse inner ear, only the sensory hair cells express harmonin. The inner ear Ush1c transcripts predicted several harmonin isoforms, some containing an additional coiled-coil domain and a proline- and serine-rich region. As several of these transcripts were absent from the eye, we propose that USH1C also underlies the DFNB18 form of isolated deafness

    Multi-Organ Involvement of Immunoglobulin G4-Related Disease

    No full text
    Immunoglobulin G4-related disease (IgG4-RD) is a fibroinflammatory condition of unknown etiology, with presumed autoimmune mechanisms. It is characterized by high levels of IgG4 and variable clinical manifestations. It can involve one or multiple organs. Herein, we reported the case of a 62-year-old man with three organs involvement. He initially presented with recurrent jaundice. Laboratory analysis revealed cholestasis, high gamma-globulin levels, renal failure, and proteinuria. Abdominal Magnetic Resonance Imaging (MRI) showed segmental strictures of the left intrahepatic bile ducts and the wirsung duct with an increased volume of the pancreas and diffuse bilateral enlargement of the kidneys. Laboratory tests revealed high IgG4 levels (770 mg/dL). Based on the biological and radiological findings, we have suggested the diagnosis of systemic IgG4-related disease involving bile ducts, the pancreas, and probably the kidneys. Renal biopsy revealed lymphoplasmacytic infiltrate and fibrosis, but no IgG4-positive cell. The patient received corticosteroid therapy with a complete resolution of all symptoms and a rapid normalization of all blood tests. The present case underlines the complexity of IgG4-RD because of its variable clinical presentation. The diagnosis is challenging and should be carefully assessed for possible multi-organ involvement
    corecore