2 research outputs found

    A Route for Bioenergy in the Sahara Region : Date Palm Waste Valorization through Updraft Gasification

    No full text
    The Adrar region (Algeria) has a total of 397,800 date palm trees (Phoenix dactylifera L.). Due to annual palm cleaning, large quantities of lignocellulosic biomass are produced. Depending on the variety, an average of 65 kg of biowaste is obtained per palm tree. Since the value of this biowaste is underrated, most of the palms are burned outdoors, causing air and visual pollution. This work explores the gasification potential of lignocellulosic waste from date palms (Phoenix dactylifera L. Takarbouche variety) into useful energy. The technology investigated is air updraft fixed-bed gasification, thanks to an originally designed and built reactor, with the capability to process 1 kg of feedstock. Four types of palm waste—namely, palms, petioles, bunch, and bunch peduncles—are first characterized (bulk density, proximate analysis, fixed carbon, elemental composition, and calorific value) and then used as feedstock for two gasification tests each. The syngas produced for the four date palm wastes is combustible, with an outlet temperature between 200 and 400 °C. The operating temperature inside the gasifier varies according to the feature of the biomass cuts (from 174 °C for the peduncles to 557 °C for palms). The experimental setup is also equipped with a cyclone, allowing for the recovery of some of the tar produced during the tests. Finally, the results show that the residence time has a positive effect on the conversion rate of date palm waste, which can significantly increase it to values of around 95%. Project: 177/2017 (Bio-fuel production from Saharan biomass in a continuous system using solar energy)\u2014General Directorate of Scientific Research and Technological Development (DGRSDT), Ministry of higher Education, Algeria.</p

    Anaerobic digestion of dry palms from five cultivars of Algerian date palm (Phoenix dactylifera L.) namely H'mira, Teggaza, Tinacer, Aghamou and Takarbouchet: A new comparative study

    No full text
    The lignocellulosic properties of date palm waste (dry palm) differ significantly from one cultivar to another, which affects the anaerobic digestion (AD) process. This study is believed to be amongst the first to evaluate the influence of date palm cultivars on the biomethane yield in order to offer an annual, continuous and cost-effective biogas production model. In this work, 5 cultivars from date palm waste namely; H'mira (H), Teggaza (Tg), Tinacer (Ti), Aghamou (Ag) and Takarbouchet (Tk) were evaluated for biogas production. All experiments were performed for 45 days with 5 reactors in triplicate under mesophilic conditions (37 °C). The highest methane yield of 231.87 ml of CH4/g of Volatile Solid (VS) was obtained with the Ag cultivars with a difference that varied between 37% and 62% depending on the cultivar type. These results indicate that the date palm cultivars massively influence the biomethane yield, it may give an opportunity for researchers to select the most suitable cultivars for methane production and provide opportunities to valorize other cultivars on other beneficial uses, such as adsorption, thermal insulation, or charcoal production etc.Web of Science269art. no. 12677
    corecore