4 research outputs found

    Graphene field effect transistor biosensors based on aptamer for amyloid-β detection

    Get PDF
    The development of cost-efficient, sensitive and specific methods to detect amyloid-beta 42 ( Aβ42 ) biomarkers in cerebrospinal fluid and serum-samples is of considerable interest to enable early and reliable diagnosis of Alzheimer’s disease as a precondition for future disease-modifying therapies. This paper presents a reduced graphene oxide field effect transistor (r-GO FET) for label free ultrasensitive detection of an Aβ42 -biomarker with RNA aptamer. The channel in the device was formed by reduction of graphene oxide nanosheets by self-assembly process. As a result, the interaction between Aβ42 and RNA aptamer on the surface of r-GO channel caused a linear response in the shift of the gate voltage ( VTG ) where the minimum conductivity occurs. The r-GO FET can detect the biomarker in range of 1ng/ml to 1pg/ml at pH 7.4 with high specificity. The developed r-GO FET is a low-cost, highly sensitive and selective method for detecting tiny concentrations of Aβ42 , which would also enable measurements in serum-samples

    In-situ PLL-g-PEG Functionalized Nanopore for Enhancing Protein Characterization

    Get PDF
    Single-molecule nanopore detection technology has revolutionized proteomics research by enabling highly sensitive and label-free detection of individual proteins. Herein, we designed a small, portable, and leak-free flowcell made of PMMA for nanopore experiments. In addition, we developed an in situ coating PLL-g-PEG approach to produce non-sticky nanopores for measuring the volume of diseases-relevant biomarker, such as the Alpha-1 antitrypsin (AAT) protein. The in situ coating method allows continuous monitoring, ensuring adequate coating, which can be directly used for translocation experiments. The coated nanopores exhibit improved characteristics, including an increased nanopore lifetime and enhanced translocation events of the AAT proteins. Furthermore, we demonstrated the reduction in the translocation event's dwell time, along with an increase in current blockade amplitudes and translocation numbers under different voltage stimuli. The study also successfully measures the single AAT protein volume (253 nm3 ), which closely aligns with the previously reported hydrodynamic volume. The real-time in situ PLL-g-PEG coating method and the developed nanopore flowcell hold great promise for various nanopores applications involving non-sticky single-molecule characterization

    Solid state micro and nanopore sensors for single entity detection

    No full text
    A general description of the work presented in this thesis can be divided into three areas of interest: micropore fabrication, nanopore modification, and their applications. The first part of the thesis is related to the novel, reliable, cost-effective, potable, mass-productive, robust, and ease of use micropore flowcell that works based on the RPS technique. Based on our first goal, which was finding an alternate materials and processes that would shorten production times while lowering costs and improving signal quality, the polyimide film was used as a substrate to create precise pores by femtosecond laser, and the resulting current blockades of different sizes of the nanoparticles were recorded. Based on the results, the device can detecting nano-sized particles by changing the current level. The experimental and theoretical investigation, scanning electron microscopy, and focus ion beam were performed to explain the micropore's performance. The second goal was design and fabrication of a leak-free, easy-to-assemble, and portable polymethyl methacrylate flowcell for nanopore experiments. Here, ion current rectification was studied in our nanodevice. We showed a self-assembly-based, controllable, and monitorable in situ Poly(l-lysine)- g-poly(ethylene glycol) coating method under voltage-driven electrolyte flow and electrostatic interaction between nanopore walls and PLL backbones. Using designed nanopore flowcell and in situ monolayer PLL-g-PEG functionalized 20±4 nm SiN nanopores, we observed non-sticky α-1 anti-trypsin protein translocation. additionally, we could show the enhancement of translocation events through this non-sticky nanopore, and also, estimate the volume of the translocated protein. In this study, by comparing the AAT protein translocation results from functionalized and non-functionalized nanopore we demonstrated the 105 times dwell time reduction (31-0.59ms), 25% amplitude enhancement (0.24-0.3 nA), and 15 times event’s number increase (1-15events/s) after functionalization in 1×PBS at physiological pH. Also, the AAT protein volume was measured, close to the calculated AAT protein hydrodynamic volume and previous reports

    Large-scale production of polyimide micropore-based flow cells for detecting nano-sized particles in fluids

    No full text
    In diagnostic and sequencing applications, solid-state nanopores hold significant promise as a single-molecule sensing platform. The fabrication of precisely sized pores has traditionally been challenging, laborious, expensive, and inefficient, which has limited its applications until recently. To overcome this problem, this paper proposes a novel, reliable, cost-effective, portable, mass-productive, robust, and ease-of-use micropore flow cell that works based on the resistive pulse sensor (RPS) technique in order to distinguish the different sizes of c nanoparticles. RPS is a robust and informative technique that can provide valuable details of the size, shape, charge, and individual particle concentrations in the media. By femtosecond laser drilling of a polyimide substrate as an alternate material, translocation of 100, 300, and 350 nm polystyrene nanoparticles in PBS buffer was distinguished by 0.1, 1, and 2 nA current blockade levels, respectively. This is the first time a micropore has been opened in a polyimide membrane using a femtosecond laser in a single step. The experimental and theoretical investigation, scanning electron microscopy and focused ion beam spectroscopy were performed to comprehensively explain the micropore's performance. We showed that our innovative micropore-based flow cell could distinguish nano-sized particles in fluids, and it can be used in large-scale production because of its simplicity and cost-effectiveness
    corecore