1,896 research outputs found

    Mechanism for a Decaying Cosmological Constant

    Get PDF
    A mechanism is introduced to reduce a large cosmological constant to a sufficiently small value consistent with observational upper limit. The basic ingradient in this mechanism is a distinction which has been made between the two unit systems used on cosmology and particle physics. We have used a conformal invariant gravitational model to define a particular conformal frame in terms of the large scale properties of the universe. It is then argued that the contributions of mass scales in particle physics to the vacuum energy density should be considered in a different conformal frame. In this manner a cancellation mechanism is presented in which the conformal factor plays a key role to relax the large effective cosmological constant.Comment: 6 pages, no figur

    RNA catalysis in model protocell vesicles.

    Get PDF
    We are engaged in a long-term effort to synthesize chemical systems capable of Darwinian evolution, based on the encapsulation of self-replicating nucleic acids in self-replicating membrane vesicles. Here, we address the issue of the compatibility of these two replicating systems. Fatty acids form vesicles that are able to grow and divide, but vesicles composed solely of fatty acids are incompatible with the folding and activity of most ribozymes, because low concentrations of divalent cations (e.g., Mg(2+)) cause fatty acids to precipitate. Furthermore, vesicles that grow and divide must be permeable to the cations and substrates required for internal metabolism. We used a mixture of myristoleic acid and its glycerol monoester to construct vesicles that were Mg(2+)-tolerant and found that Mg(2+) cations can permeate the membrane and equilibrate within a few minutes. In vesicles encapsulating a hammerhead ribozyme, the addition of external Mg(2+) led to the activation and self-cleavage of the ribozyme molecules. Vesicles composed of these amphiphiles grew spontaneously through osmotically driven competition between vesicles, and further modification of the membrane composition allowed growth following mixed micelle addition. Our results show that membranes made from simple amphiphiles can form vesicles that are stable enough to retain encapsulated RNAs in the presence of divalent cations, yet dynamic enough to grow spontaneously and allow the passage of Mg(2+) and mononucleotides without specific macromolecular transporters. This combination of stability and dynamics is critical for building model protocells in the laboratory and may have been important for early cellular evolution

    On Cosmological Implication of the Trace Anomaly

    Full text link
    We establish a connection between the trace anomaly and a thermal radiation in the context of the standard cosmology. This is done by solving the covariant conservation equation of the stress tensor associated with a conformally invariant quantum scalar field. The solution corresponds to a thermal radiation with a temperature which is given in terms of a cut-off time excluding the spacetime regions very close to the initial singularity. We discuss the interrelation between this result and the result obtained in a two-dimensional schwarzschild spacetime.Comment: 8 pages, no figure

    Improving the Segmentation of Anatomical Structures in Chest Radiographs using U-Net with an ImageNet Pre-trained Encoder

    Full text link
    Accurate segmentation of anatomical structures in chest radiographs is essential for many computer-aided diagnosis tasks. In this paper we investigate the latest fully-convolutional architectures for the task of multi-class segmentation of the lungs field, heart and clavicles in a chest radiograph. In addition, we explore the influence of using different loss functions in the training process of a neural network for semantic segmentation. We evaluate all models on a common benchmark of 247 X-ray images from the JSRT database and ground-truth segmentation masks from the SCR dataset. Our best performing architecture, is a modified U-Net that benefits from pre-trained encoder weights. This model outperformed the current state-of-the-art methods tested on the same benchmark, with Jaccard overlap scores of 96.1% for lung fields, 90.6% for heart and 85.5% for clavicles.Comment: Presented at the First International Workshop on Thoracic Image Analysis (TIA), MICCAI 201

    Free will in addictive behaviors:A matter of definition

    Get PDF
    Certain people are at risk for using alcohol or other drugs excessively and for developing problems with their use. Their susceptibility might arise from a variety of factors, including their genetic make-up, brain chemistry, family background, personality and other psychological variables, and environmental and sociocultural variables. Moreover, after substance use has become established, there are additional cognitive-motivational variables (e.g., substance-related attentional bias) that contribute to enacting behaviors consistent with the person's motivation to acquire and use the substance. People who are at such risk are likely to choose to use addictive substances even though doing so entails negative consequences. In the sense of complete freedom from being determined by causal factors, we believe that there is no such thing as free will, but defined as ability to make choices from among multiple options, even though the choices are ultimately governed by natural processes, addicted individuals are free to choose. Although they might appear unable to exercise this kind of free will in decisions about their substance use, addictive behaviors are ultimately always goal-directed and voluntary. Such goal pursuits manifest considerable flexibility. Even some severely addicted individuals can cease their use when the value of continuing the use abruptly declines or when the subjective cost of continuing the use is too great with respect to the incentives in other areas of their lives. Formal treatment strategies (e.g., contingency management, Systematic Motivational Counseling, cognitive training) can also be used to facilitate this reversal

    Effects of the COVID-19 pandemic on academic preparation and performance: a complex picture of equity

    Get PDF
    IntroductionMany experts have predicted a drop in students’ academic performance due to an extended period of remote instruction and other harmful effects of the pandemic.MethodsAs university instructors and education researchers, we sought to investigate the effects of the pandemic on students’ preparation for college-level coursework and their performance in early college using mixed effects regression models. Data were collected from STEM students at a public research university in the southeastern United States.ResultsWe found that demographic gaps in high school preparation (as measured by ACT scores) between men and women, as well as underrepresented minority and majority students, remained relatively consistent after the start of the pandemic. These gaps were approximately 1 point (out of 36) and 3 points, respectively. However, the gap between first generation and continuing generation students increased from prior to 2020, to after 2020, going from approximately 1 point to 2 points. This gap in preparation was not accompanied by a corresponding shift in the demographics of the student population and there was no corresponding increase in the demographic gaps in students’ first term grades.DiscussionThe data seem to suggest that first-generation students in STEM suffered more from the changes to secondary instruction during the pandemic, but that college instructors were able to mitigate some of these effects on first-semester grades. However, these effects were only mitigated to the extent that they preserved the status quo of pre-pandemic inequities in undergraduate STEM education

    The supraclavius muscle is a novel muscular anomaly observed in two cases of thoracic outlet syndrome

    Get PDF
    Various anomalous muscles and fibrofascial structures have been described in relation to the anatomy of thoracic outlet syndrome. We describe two patients with a previously undescribed muscle anomaly, which originated laterally near the trapezius muscle, coursed across the supraclavicular space deep to the scalene fat pad, and attached obliquely to the superior undersurface of the medial clavicle, which we have termed the “supraclavius” muscle. The significance of the supraclavius muscle is unknown, but its occurrence in patients with thoracic outlet syndrome indicates that it can be associated with narrowing of the anatomic space adjacent to the neurovascular structures

    Application of the penalty coupling method for the analysis of blood vessels

    Get PDF
    Due to the significant health and economic impact of blood vessel diseases on modern society, its analysis is becoming of increasing importance for the medical sciences. The complexity of the vascular system, its dynamics and material characteristics all make it an ideal candidate for analysis through fluid structure interaction (FSI) simulations. FSI is a relatively new approach in numerical analysis and enables the multi-physical analysis of problems, yielding a higher accuracy of results than could be possible when using a single physics code to analyse the same category of problems. This paper introduces the concepts behind the Arbitrary Lagrangian Eulerian (ALE) formulation using the penalty coupling method. It moves on to present a validation case and compares it to available simulation results from the literature using a different FSI method. Results were found to correspond well to the comparison case as well as basic theory

    Reanalysis of two eclipsing binaries: EE Aqr and Z Vul

    Full text link
    We study the radial-velocity and light curves of the two eclipsing binaries EE Aqr and Z Vul. Using the latest version of the Wilson & Van Hamme (2003) model, absolute parameters for the systems are determined. We find that EE Aqr and Z Vul are near-contact and semi-detached systems, respectively. The primary component of EE Aqr fills about 96% of its 'Roche lobe', while its secondary one appears close to completely filling this limiting volume. In a similar way, we find fill-out proportions of about 72 and 100% of these volumes for the primary and secondary components of Z Vul respectively. We compare our results with those of previous authors.Comment: 13 pages, 8 figures, 10 table
    • …
    corecore