4 research outputs found

    Synthesis and Assessment of Two Malonyl Dihydrazide Derivatives as Corrosion Inhibitors for Carbon Steel in Acidic Media: Experimental and Theoretical Studies

    No full text
    Despite the extensive use of carbon steel in all industrial sectors, particularly in the petroleum industry, its low corrosion resistance is an ongoing problem for these industries. In the current work, two malonyl dihydrazide derivatives, namely 2,2’-malonylbis (N-phenylhydrazine-1-carbothiamide (MBC) and N’1, N’3-bis(-2-hydroxybenzylidene) malonohydrazide (HBM), were examined as inhibitors for the carbon steel corrosion in 1.0 M HCl. Both MBC and HBM were characterised using thin-layer chromatography, elemental analysis, infrared spectroscopy, and nuclear magnetic resonance techniques. The corrosion tests were performed using mass loss measurements, polarisation curves, and electrochemical impedance spectroscopy. It is obtained from the mass loss studies that the optimal concentration for both inhibitors is 2.0 × 10−5 mol/L, and the inhibition efficiencies reached up to 90.7% and 84.5% for MBC and HBM, respectively. Electrochemical impedance spectroscopy (EIS) and potentiodynamic polarisation (PDP) indicate an increased impedance in the presence of both MBC and HBM and mixed-type inhibitors, respectively. Both inhibitors can mitigate corrosion in the range of 298–328 K. Values of free energy changes obtained from the Langmuir model suggest that the inhibitors suppress the corrosion process principally by chemisorption. The computational investigations were conducted to identify the factors connected with the anti-corrosive properties of the examined inhibitors

    A correlational study: Establishing the link between quantum parameters and particle dynamics around Schwarzschild black hole

    No full text
    The field of point particle dynamics is correlated with the study of particle dynamics around the black hole and one can initiate the study of a more complex motion of extended/celestial bodies. In this article, we consider the study of the dynamics of the neutral/charged particles around the quantum corrected-Schwarzschild black hole and Schwarzschild black hole. We investigate Noether symmetries and their conservation laws corresponding to the quantum corrected-Schwarzschild spacetime. We also study the effect of angular momentum, quantum parameters and magnetic field on the dynamics of neutral and charged particles around the quantum corrected-Schwarzschild black hole and Schwarzschild black hole

    Green Synthesis of Metal and Metal Oxide Nanoparticles Using Different Plants’ Parts for Antimicrobial Activity and Anticancer Activity: A Review Article

    No full text
    Nanotechnology emerged as a scientific innovation in the 21st century. Metallic nanoparticles (metal or metal oxide nanoparticles) have attained remarkable popularity due to their interesting biological, physical, chemical, magnetic, and optical properties. Metal-based nanoparticles can be prepared by utilizing different biological, physical, and chemical methods. The biological method is preferred as it provides a green, simple, facile, ecofriendly, rapid, and cost-effective route for the green synthesis of nanoparticles. Plants have complex phytochemical constituents such as carbohydrates, amino acids, phenolics, flavonoids, terpenoids, and proteins, which can behave as reducing and stabilizing agents. However, the mechanism of green synthesis by using plants is still highly debatable. In this report, we summarized basic principles or mechanisms of green synthesis especially for metal or metal oxide (i.e., ZnO, Au, Ag, and TiO2, Fe, Fe2O3, Cu, CuO, Co) nanoparticles. Finally, we explored the medical applications of plant-based nanoparticles in terms of antibacterial, antifungal, and anticancer activity
    corecore