15 research outputs found

    Increased heavy metal tolerance of cowpea plants by dual inoculation of an arbuscular mycorrhizal fungi and nitrogen-fixer Rhizobium bacterium

    Get PDF
    Through biological inoculation technology, the bacterial-mycorrhizal-legume tripartite symbiosis in artificially heavy metal polluted soil was documented and the effects of dual inoculation with arbuscular mycorrhizal (AM) fungus and Rhizobium (N-fixing bacteria, NFB) on the host plant cowpea (Vigna sinensis) in pot cultures were investigated at six concentrations of Zn (0.0 – 1000 mg/kg dry soil) and Cd (0.0 – 100 mg/kg dry soil). From a number of physiological indices measured in this study, microsymbionts significantly increased dry weight, root : shoot ratios, leaf number and area, plant length, leaf pigments, total carbohydrates, N and P content of infected plants as compared with non infected controls at all levels of heavy metal concentrations. Tolerance index of cowpea plants was increased in the presence of microsymbionts than in their absence in polluted soil. Microsymbionts dependencies of cowpea plants tended to be increased at higher levels of Zn and Cd in polluted soil. Metals accumulated by microsymbionts-infected cowpea plant were mostly distributed in root tissues, suggesting that an exclusion strategy for metal tolerance widely exists in them. This study provides evidence for benefits of NFB to AM fungi in the protection of host plants against the detrimental effects of heavy metals. If so, bacterial-AM-legume tripartite symbiosis could be a new approach to increase the heavy metal tolerance of legumes plants under heavy metal polluted soil.Keyword: Mycorrhiza, Vigna sinesis, heavy metals, microsymbiosis, Rhizobiu

    Enhancement of alpha amylase production by Aspergillus flavus AUMC 11685 on mandarin (Citrus reticulata) peel using submerged fermentation

    Get PDF
    Mandarin peel as submerged fermentation (SmF) source was tested for the production of alpha amylase enzyme by strain of Aspergillus flavus AUMC 11685. Incubation period, concentration of substrate, temperature, pH and size of inoculum were optimized to achieve the maximum production of alpha amylase enzyme by Aspergillus flavus using mandarin peel. The maximum production of alpha amylase enzyme by Aspergillus flavus was recorded at 4-5 days of incubation, 3% substrate concentration, inoculum concentration 10%, temperature 28-40°C and pH 4-5.5. DOI: http://dx.doi.org/10.5281/zenodo.81827

    Enhancement of Growth and Grain Yield of Rice in Nutrient Deficient Soils by Rice Probiotic Bacteria

    Get PDF
    Plant associated bacteria are promising alternatives to chemical fertilizers for plant growth and yield improvement in an eco-friendly manner. In this study, rice associated bacteria were isolated and assessed for mineral phosphate solubilizationand indole-3-acetic acid (IAA) production activity in vitro. Six promising strains, which were tentatively identified as phylotaxon Pseudochrobactrum sp. (BRRh-1), Burkholderia sp. (BRRh-2), Burkholderia sp. (BRRh-3), Burkholderia sp. (BRRh-4), Pseudomonas aeruginosa (BRRh-5 and BRRh-6) based on their 16S rRNA gene phylogeny, exhibited significant phosphate solubilizing activity in National Botanical Research Institute phosphate growth medium, and BRRh-4 displayed the highest phosphate solubilizing activity, followed by BRRh-5. The pH of the culture broth declined, resulting in increase of growth rate of bacteria at pH 7, which might be due to organic acid secretion by the strains. In presence of L-tryptophan, five isolates synthesized IAA and the maximum IAA was produced by BRRh-2, followed by BRRh-1. Application of two most efficient phosphate solubilizing isolates BRRh-4 and BRRh-5 by root dipping (colonization) of seedling and spraying at the flowering stage significantly enhanced the growth and grain yield of rice variety BRRI dhan-29. Interestingly, application of both strains with 50% of recommended nitrogen, phosphorus and potassium fertilizers produced equivalent or higher grain yield of rice compared to the control grown with full recommended fertilizer doses, which suggests that these strains may have the potential to be used as bioinoculants for sustainable rice production

    Comparative molecular studies of halophilic bacteria from saline water and soil in the Saudi environment

    Get PDF
    Halophilic bacteria are a microorganism that grows optimally in the presence of the very high concentration of sodium chloride. Halophiles are vital sources of various enzymes including hydrolases, which are very stable and catalytically highly efficient at high salt concentration and other extreme conditions such as high temperature, pH and presence of organic solvents.  Several hydrolases such as amylases, proteases, and lipases have been obtained from halophilic bacteria and are commonly used for various industrial applications. We initiated a screening project to isolate and characterize the halophilic bacteria from the Red Sea, which is one of the saltiest bodies of water in the world. Water and soil samples, collected from the Red Sea coast, Jeddah, Saudi Arabia, were screened for isolation of halophilic bacteria. Ten bacterial isolates were obtained, which were characterized by biochemical tests and 16S rRNA gene sequencing. Hydrolase producing bacteria among the isolates were screened by plate assay on starch and gelatin agar plates for amylase and protease, respectively.  Two bacterial isolates i.e Bacillus haynesii and Enterobacter cloacae subsp. were found to possess significant amylase and protease activity. Further characterization of both the strains is in progress

    Increased heavy metal tolerance of cowpea plants by dual inoculation of an arbuscular mycorrhizal fungi and nitrogen-fixer Rhizobium bacterium

    No full text
    Through biological inoculation technology, the bacterial-mycorrhizal-legume tripartite symbiosis in artificially heavy metal polluted soil was documented and the effects of dual inoculation with arbuscular mycorrhizal (AM) fungus and Rhizobium (N-fixing bacteria, NFB) on the host plant cowpea (Vigna sinensis   ) in pot cultures were investigated at six concentrations of Zn (0.0 - 1000 mg/kg dry soil) and Cd (0.0 - 100 mg/kg dry soil). From a number of physiological indices measured in this study, microsymbionts significantly increased dry weight, root : shoot ratios, leaf number and area, plant length, leaf pigments, total carbohydrates, N and P content of infected plants as compared with non infected controls at all levels of heavy metal concentrations. Tolerance index of cowpea plants was increased in the presence of microsymbionts than in their absence in polluted soil. Microsymbionts dependencies of cowpea plants tended to be increased at higher levels of Zn and Cd in polluted soil. Metals accumulated by microsymbionts-infected cowpea plant were mostly distributed in root tissues, suggesting that an exclusion strategy for metal tolerance widely exists in them. This study provides evidence for benefits of NFB to AM fungi in the protection of host plants against the detrimental effects of heavy metals. If so, bacterial-AM-legume tripartite symbiosis could be a new approach to increase the heavy metal tolerance of legumes plants under heavy metal polluted soil

    Phylogenetic affiliations of Bacillus amyloliquefaciens isolates produced by a bacteriocin-like substance in goat milk

    Get PDF
    Eight isolates identified as belonging to the genus Bacillus were obtained from Aloqt (a crusty dried product made from goat milk). The cell-free culture supernatant (CFCS) from the eight isolates possessed an inhibitory spectrum against Staphylococcus aureus and Escherichia coli. The eight unknown bacterial isolates were identified by PCR amplification of their 16S ribosomal RNA gene and sequencing of the resulting PCR products. All of the isolates were classified as members of Bacillus amyloliquefaciens, as their 16S rDNA similarities to the respective species were greater than 99%. The phylogenetic analysis grouped two isolates with strain BCRC 11601 and the remaining six isolates with strains MPA 1034 and BCRC 11601. The inhibitory activity of the CFCS was either highly reduced or fully inactivated when treated by proteolytic enzymes, suggesting the possible involvement of a protein/polypeptide bacteriocin-like inhibitory substance (BLIS) in their antagonism. The optimum growth conditions for maximum inhibitory activity were achieved at an initial pH of 7, incubation temperature of 37 °C, and NaCl concentration of (1%). A considerable decrease and/or complete loss of activity occurred at values above and below the optimum. The maximum inhibitory activity occurred after 24 h of incubation; as the incubation time increased, a decrease in the activity was observed until a complete loss of activity occurred after 72 h of incubation

    Enhancement of alpha amylase production by Aspergillus flavus AUMC 11685 on mandarin (Citrus reticulata) peel using submerged fermentation

    Get PDF
    Mandarin peel as submerged fermentation (SmF) source was tested for the production of alpha amylase enzyme by strain of Aspergillus flavus AUMC 11685. Incubation period, concentration of substrate, temperature, pH and size of inoculum were optimized to achieve the maximum production of alpha amylase enzyme by Aspergillus flavus using mandarin peel. The maximum production of alpha amylase enzyme by Aspergillus flavus was recorded at 4-5 days of incubation, 3% substrate concentration, inoculum concentration 10%, temperature 28-40°C and pH 4-5.5. DOI: http://dx.doi.org/10.5281/zenodo.81827

    Therapeutic role of Ricinus communis L. and its bioactive compounds in disease prevention and treatment

    No full text
    Ricinus communis L. (R. communis), commonly known as castor oil plant, is used as a traditional natural remedy or folkloric herb for the control and treatment of a wide range of diseases around the globe. Various studies have revealed the presence of diverse phytochemicals such as alkaloids, flavonoids, terpenes, saponins, phenolic compounds such as kaempferol, gallic acid, ricin, rutin, lupeol, ricinoleic acid, pinene, thujone and gentisic acid. These phytochemicals have been responsible for pharmacological and therapeutic effects, including anticancer, antimicrobial, insecticidal, antioxidant, anti-diabetic, antinociceptive, anti-inflammatory, bone regenerative, analgesic, and anticonvulsant activity. R. communis harbours phytochemicals which have been shown to target peroxisome proliferator activated receptor (PPAR), nuclear factor NF- Îş -B, cytochrome p450, P38 mitogen-activated protein kinases kinase (p38 MAPK), tumor protein P53, B-cell lymphoma-extra-large (Bcl-xL) and vascular endothelial growth factor receptor-2 (VEGFR-2). Considering its wide variety of phytochemicals, its pharmacological activity and the subsequent clinical trials, R. communis could be a good candidate for discovering novel complementary drugs. Further experimental and advanced clinical studies are required to explore the pharmaceutical, beneficial therapeutic and safety prospects of R. communis with its phytochemicals as a herbal and complementary medicine for combating various diseases and disorders
    corecore