8,487 research outputs found
Leveraging Employer Practices in Global Regulatory Frameworks to Improve Employment Outcomes for People with Disabilities
Work is an important part of life, providing both economic security and a forum to contribute one’s talents and skills to society, thereby anchoring the individual in a social role. However, access to work is not equally available to people with disabilities globally. Regulatory environments that prohibit discrimination and support vocational training and educational opportunities constitute a critical first step toward economic independence. However, they have not proven sufficient in themselves. In this article, we aim to infuse deeper consideration of employer practice and demand-side policy reforms into global policy discussions of the right to work for people with disabilities. We begin by documenting the employment and economic disparities existing for people with disabilities globally, followed by a description of the international, regional, and local regulatory contexts aiming to improve labor market outcomes for people with disabilities. Next, we examine how policies can leverage employer interests to further address inequalities. We discuss employer policies and practices demonstrated in the research to facilitate recruitment, hiring, career development, retention, and meaningful workplace inclusion. The goal of the article is to synthesize existing international literature on employment rights for people with disabilities with the employer perspective
Operational Discord Measure for Gaussian States with Gaussian Measurements
We introduce an operational discord-type measure for quantifying nonclassical
correlations in bipartite Gaussian states based on using Gaussian measurements.
We refer to this measure as operational Gaussian discord (OGD). It is defined
as the difference between the entropies of two conditional probability
distributions associated to one subsystem, which are obtained by performing
optimal local and joint Gaussian measurements. We demonstrate the operational
significance of this measure in terms of a Gaussian quantum protocol for
extracting maximal information about an encoded classical signal. As examples,
we calculate OGD for several Gaussian states in the standard form.Comment: 18 pages, 3 figure
What can quantum optics say about computational complexity theory?
Considering the problem of sampling from the output photon-counting
probability distribution of a linear-optical network for input Gaussian states,
we obtain results that are of interest from both quantum theory and the
computational complexity theory point of view. We derive a general formula for
calculating the output probabilities, and by considering input thermal states,
we show that the output probabilities are proportional to permanents of
positive-semidefinite Hermitian matrices. It is believed that approximating
permanents of complex matrices in general is a #P-hard problem. However, we
show that these permanents can be approximated with an algorithm in BPP^NP
complexity class, as there exists an efficient classical algorithm for sampling
from the output probability distribution. We further consider input
squeezed-vacuum states and discuss the complexity of sampling from the
probability distribution at the output.Comment: 5 pages, 1 figur
Sufficient Conditions for Efficient Classical Simulation of Quantum Optics
We provide general sufficient conditions for the efficient classical
simulation of quantum-optics experiments that involve inputting states to a
quantum process and making measurements at the output. The first condition is
based on the negativity of phase-space quasiprobability distributions (PQDs) of
the output state of the process and the output measurements; the second one is
based on the negativity of PQDs of the input states, the output measurements,
and the transition function associated with the process. We show that these
conditions provide useful practical tools for investigating the effects of
imperfections in implementations of boson sampling. In particular, we apply our
formalism to boson-sampling experiments that use single-photon or
spontaneous-parametric-down-conversion sources and on-off photodetectors.
Considering simple models for loss and noise, we show that above some threshold
for the probability of random counts in the photodetectors, these
boson-sampling experiments are classically simulatable. We identify mode
mismatching as the major source of error contributing to random counts and
suggest that this is the chief challenge for implementations of boson sampling
of interesting size.Comment: 12 pages, 1 figur
Verification of quantum discord
We introduce a measurement-based method for verifying quantum discord of any
bipartite quantum system. We show that by performing an informationally
complete POVM (IC-POVM) on one subsystem and checking the commutativity of the
conditional states of the other subsystem, quantum discord from the second
subsystem to the first can be verified. This is an improvement upon previous
methods, which enables us to efficiently apply our method to
continuous-variable systems, as IC-POVMs are readily available from homodyne or
heterodyne measurements. We show that quantum discord for Gaussian states can
be verified by checking whether the peaks of the conditional Wigner functions
corresponding to two different outcomes of heterodyne measurement coincide at
the same point in the phase space. Using this method, we also prove that the
only Gaussian states with zero discord are product states; hence, Gaussian
states with Gaussian discord have nonzero quantum discord.Comment: 5 page
A Minority of Patients with Type 1 Diabetes Routinely Downloads and Retrospectively Reviews Device Data.
BackgroundIn type 1 diabetes (T1D), periodic review of blood glucose and insulin dosing should be performed, but it is not known how often patients review these data on their own. We describe the proportion of patients with T1D who routinely downloaded and reviewed their data at home.Materials and methodsA cross-sectional survey of 155 adults and 185 caregivers of children with T1D at a single academic institution was performed. "Routine Downloaders" (downloaded four or more times in the past year) were also considered "Routine Reviewers" if they reviewed their data most of the time they downloaded from devices. Logistic regression was used to identify factors associated with being a Routine Reviewer.ResultsOnly 31% of adults and 56% of caregivers reported ever downloading data from one or more devices, whereas 20% and 40%, respectively, were considered Routine Downloaders. Only 12% of adults and 27% of caregivers were Routine Reviewers. Mean hemoglobin A1c was lower in Routine Reviewers compared with non-Routine Reviewers (7.2±1.0% vs. 8.1±1.6% [P=0.03] in adults and 7.8±1.4% vs. 8.6±1.7% [P=0.001] in children). In adjusted analysis of adults, the odds ratio of being a Routine Reviewer of one or more devices for every 10-year increase in age was 1.5 (95% confidence interval, 1.1, 2.1 [P=0.02]). For every 10 years since diabetes diagnosis, the odds ratio of being a Routine Reviewer was 1.7 (95% confidence interval, 1.2, 2.4 [P=0.01]). For caregivers, there were no statistically significant factors associated with being a Routine Reviewer.ConclusionsA minority of T1D patients routinely downloads and reviews data from their devices on their own. Further research is needed to understand obstacles, provide better education and tools for self-review, and determine if patient self-review is associated with improved glycemic control
Quantum Holography
We propose to make use of quantum entanglement for extracting holographic
information about a remote 3-D object in a confined space which light enters,
but from which it cannot escape. Light scattered from the object is detected in
this confined space entirely without the benefit of spatial resolution. Quantum
holography offers this possibility by virtue of the fourth-order quantum
coherence inherent in entangled beams.Comment: 7 pages, submitted to Optics Expres
Impact-ionization and noise characteristics of thin III-V avalanche photodiodes
It is, by now, well known that McIntyre\u27s localized carrier-multiplication theory cannot explain the suppression of excess noise factor observed in avalanche photodiodes (APDs) that make use of thin multiplication regions. We demonstrate that a carrier multiplication model that incorporates the effects of dead space, as developed earlier by Hayat et al. provides excellent agreement with the impact-ionization and noise characteristics of thin InP, In/sub 0.52/Al/sub 0.48/As, GaAs, and Al/sub 0.2/Ga/sub 0.8/As APDs, with multiplication regions of different widths. We outline a general technique that facilitates the calculation of ionization coefficients for carriers that have traveled a distance exceeding the dead space (enabled carriers), directly from experimental excess-noise-factor data. These coefficients depend on the electric field in exponential fashion and are independent of multiplication width, as expected on physical grounds. The procedure for obtaining the ionization coefficients is used in conjunction with the dead-space-multiplication theory (DSMT) to predict excess noise factor versus mean-gain curves that are in excellent accord with experimental data for thin III-V APDs, for all multiplication-region widths
- …