79 research outputs found

    Changing Face of the Extrasolar Giant Planet, HD 209458b

    Get PDF
    High-resolution atmospheric flow simulations of the tidally-locked extrasolar giant planet, HD 209458b, show large-scale spatio-temporal variability. This is in contrast to the simple, permanent day/night (i.e., hot/cold) picture. The planet's global circulation is characterized by a polar vortex in motion around each pole and a banded structure corresponding to ~3 broad zonal (east-west) jets. For very strong jets, the circulation-induced temperature difference between moving hot and cold regions can reach up to ~1000 K, suggesting that atmospheric variability could be observed in the planet's spectral and photometric signatures.Comment: 6 pages, 1 ps figure, 2 low-res color figures (JPEG). Figure 3 updated. Contact authors for hi-res versions of color figures. Accepted for publication in ApJ

    On Signatures of Atmospheric Features in Thermal Phase Curves of Hot Jupiters

    Full text link
    Turbulence is ubiquitous in Solar System planetary atmospheres. In hot Jupiter atmospheres, the combination of moderately slow rotation and thick pressure scale height may result in dynamical weather structures with unusually large, planetary-size scales. Using equivalent-barotropic, turbulent circulation models, we illustrate how such structures can generate a variety of features in the thermal phase curves of hot Jupiters, including phase shifts and deviations from periodicity. Such features may have been spotted in the recent infrared phase curve of HD 189733b. Despite inherent difficulties with the interpretation of disk-integrated quantities, phase curves promise to offer unique constraints on the nature of the circulation regime present on hot Jupiters.Comment: 22 pages, 6 figures, 1 table, accepted for publication in Ap

    Unusual quasi 10‐day planetary wave activity and the ionospheric response during the 2019 Southern Hemisphere sudden stratospheric warming

    Get PDF
    An unusual sudden stratospheric warming (SSW) event occurred in the Southern Hemisphere in September 2019. Ground-based and satellite observations show the presence of transient eastward- and westward-propagating quasi-10 day planetary waves (Q10DWs) during the SSW. The planetary wave activity maximizes in the mesosphere and lower thermosphere region approximately 10 days after the SSW onset. Analysis indicates that the westward-propagating Q10DW with zonal wave number s = 1 is mainly symmetric about the equator, which is contrary to theory which predicts the presence of an antisymmetric normal mode for such planetary wave. Observations from microwave limb sounder and sounding of the atmosphere using broadband emission radiometry are combined with meteor radar wind measurements from Antarctica, providing a comprehensive view of Q10DW wave activity in the Southern Hemisphere during this SSW. Analysis suggests that the Q10DWs of various wavenumbers are potentially excited from nonlinear wave-wave interactions that also involve stationary planetary waves with s = 1 and s = 2. The Q10DWs are also found to couple the ionosphere with the neutral atmosphere. The timing of the quasi-10-day oscillations (Q10DOs) in the ionosphere are contemporaneous with the Q10DWs in the neutral atmosphere during a period of relatively low solar and geomagnetic activity, suggesting that the Q10DWs play a key role in driving the ionospheric Q10DOs during the Southern SSW event. This study provides observational evidence for coupling between the neutral atmosphere and ionosphere through the upward propagation of global scale planetary waves

    Observations of the phase-locked 2 day wave over the Australian sector using medium-frequency radar and airglow data

    Get PDF
    Extent: 22p.The quasi 2 day wave, with a nominal mean period just above 50 h, is a significant feature of the 80–100 km altitude region in both hemispheres. It becomes particularly prominent in the Southern Hemisphere summer at midlatitudes where, a short time after summer solstice, its amplitude rapidly increases and its mean period is found to be approximately 48 h, producing an oscillation phase locked in local time. This lasts for a few weeks. Presented here are observations of the meridional winds and airglow over two sites in Australia, for 4 years during the austral summers of 2003–2006. We show that during those times when the large-amplitude phase-locked 2 day wave (PL-TDW) is present the diurnal tide greatly decreases. This is consistent with the Walterscheid and Vincent (1996) model in which the PL-TDW derives its energy from a parametric excitation by the diurnal tide. These data also show that the diurnal tide is more suppressed and the PL-TDW amplitude is larger in odd-numbered years, suggesting a biannual effect. The airglow data indicated that, for the PL-TDW, the winds and temperature are nearly out of phase. When the PL-TDW is present airglow amplitudes can become quite large, a result dependent on the local time of the PL-TDW maximum. The airglow intensity response was, in general, much larger than what would be expected from the airglow temperature response, suggesting that the PL-TDW is causing a significant composition change possibly due to minor constituent transport.J. H. Hecht, R. L. Walterscheid, L. J. Gelinas, R. A. Vincent, I. M. Reid, and J. M. Woith
    • 

    corecore