8 research outputs found
On the Potential of a Poly(vinylidenefluoride-co-hexafluoropropylene) Polymer Inclusion Membrane Containing Aliquat® 336 and Dibutyl Phthalate for V(V) Extraction from Sulfate Solutions
A polymer inclusion membrane (PIM) composed of 50 wt% base polymer poly(vinylidenefluoride-co-hexafluoropropylene), 40 wt% extractant Aliquat® 336, and 10 wt% dibutyl phthalate as plasticizer/modifier provided the efficient extraction of vanadium(V) (initial concentration 50 mg L−1) from 0.1 M sulfate solutions (pH 2.5). The average mass and thickness of the PIMs (diameter 3.5 cm) were 0.057 g and 46 μm, respectively. It was suggested that V(V) was extracted as VO2SO4− via an anion exchange mechanism. The maximum PIM capacity was estimated to be ~56 mg of V(V)/g for the PIM. Quantitative back-extraction was achieved with a 50 mL solution of 6 M H2SO4/1 v/v% of H2O2. It was assumed that the back-extraction process involved the oxidation of VO2+ to VO(O2)+ by H2O2. The newly developed PIM, with the optimized composition mentioned above, exhibited an excellent selectivity for V(V) in the presence of metallic species present in digests of spent alumina hydrodesulfurization catalysts. Co-extraction of Mo(VI) with V(V) was eliminated by its selective extraction at pH 1.1. Characterization of the optimized PIM was performed by contact angle measurements, atomic-force microscopy, energy dispersive X-ray spectroscopy, thermogravimetric analysis/derivatives thermogravimetric analysis and stress–strain measurements. Replacement of dibutyl phthalate with 2-nitrophenyloctyl ether improved the stability of the studied PIMs
On the Potential of a Poly(vinylidenefluoride-<i>co</i>-hexafluoropropylene) Polymer Inclusion Membrane Containing Aliquat<sup>®</sup> 336 and Dibutyl Phthalate for V(V) Extraction from Sulfate Solutions
A polymer inclusion membrane (PIM) composed of 50 wt% base polymer poly(vinylidenefluoride-co-hexafluoropropylene), 40 wt% extractant Aliquat® 336, and 10 wt% dibutyl phthalate as plasticizer/modifier provided the efficient extraction of vanadium(V) (initial concentration 50 mg L−1) from 0.1 M sulfate solutions (pH 2.5). The average mass and thickness of the PIMs (diameter 3.5 cm) were 0.057 g and 46 μm, respectively. It was suggested that V(V) was extracted as VO2SO4− via an anion exchange mechanism. The maximum PIM capacity was estimated to be ~56 mg of V(V)/g for the PIM. Quantitative back-extraction was achieved with a 50 mL solution of 6 M H2SO4/1 v/v% of H2O2. It was assumed that the back-extraction process involved the oxidation of VO2+ to VO(O2)+ by H2O2. The newly developed PIM, with the optimized composition mentioned above, exhibited an excellent selectivity for V(V) in the presence of metallic species present in digests of spent alumina hydrodesulfurization catalysts. Co-extraction of Mo(VI) with V(V) was eliminated by its selective extraction at pH 1.1. Characterization of the optimized PIM was performed by contact angle measurements, atomic-force microscopy, energy dispersive X-ray spectroscopy, thermogravimetric analysis/derivatives thermogravimetric analysis and stress–strain measurements. Replacement of dibutyl phthalate with 2-nitrophenyloctyl ether improved the stability of the studied PIMs
Prevalence of Toxoplasma gondii and Neospora caninum contaminations in poultry eggs: molecular surveillance in three different geographical regions of Iran
Abstract Background Toxoplasma gondii and Neospora caninum are important protozoan parasites with worldwide distribution among warm-blooded animals. Moreover, T. gondii is a zoonotic parasite that infects humans. Poultries are important intermediated hosts of T. gondii and N. caninum. However, little is known about the contamination of poultry eggs with these parasites. We aimed to investigate the molecular frequency of T. gondii and N. caninum among the eggs of chicken, domestic duck, and quail from three different geographic regions of Iran. T. gondii and N. caninum were detected by PCR targeting the RE and Nc5 genes, respectively. Findings Overall contamination rates with T. gondii and N. caninum were 10.7 and 5.9%, respectively. The overall contamination rates of T. gondii among chicken, duck, and quail were 12.2, 15.5, and 4.4%, respectively; while N. caninum was detected in 11.1, 3.3, and 1.1% of the same samples, respectively. The contamination rates were increased with increasing humidity across three different regions. Conclusions Taken together, this study indicates the contamination of poultry eggs with T. gondii and N. caninum. The possibility of egg-born transmission of T. gondii should not be neglected by consuming raw soft-boiled eggs. Furthermore, contamination of poultry eggs could be an indicator for environmental contamination by these parasites