8 research outputs found

    Energy Optimization in NCFET-based Processors

    Get PDF
    Energy consumption is a key optimization goal for all modern processors. Negative Capacitance Field-Effect Transistors (NCFETs) are a leading emerging technology that promises outstanding performance in addition to better energy efficiency. Thickness of the additional ferroelectric layer, frequency, and voltage are the key parameters in NCFET technology that impact the power and frequency of processors. However, their joint impact on energy optimization has not been investigated yet.In this work, we are the first to demonstrate that conventional (i.e., NCFET-unaware) dynamic voltage/frequency scaling (DVFS) techniques to minimize energy are sub-optimal when applied to NCFET-based processors. We further demonstrate that state-of-the-art NCFET-aware voltage scaling for power minimization is also sub-optimal when it comes to energy. This work provides the first NCFET-aware DVFS technique that optimizes the processor\u27s energy through optimal runtime frequency/voltage selection. In NCFETs, energy-optimal frequency and voltage are dependent on the workload and technology parameters. Our NCFET-aware DVFS technique considers these effects to perform optimal voltage/frequency selection at runtime depending on workload characteristics. Results show up to 90 % energy savings compared to conventional DVFS techniques. Compared to state-of-the-art NCFET-aware power management, our technique provides up to 72 % energy savings along with 3.7x higher performance

    Impact of NCFET on Neural Network Accelerators

    Get PDF
    This is the first work to investigate the impact that Negative Capacitance Field-Effect Transistor (NCFET) brings on the efficiency and accuracy of future Neural Networks (NN). NCFET is at the forefront of emerging technologies, especially after it has become compatible with the existing fabrication process of CMOS. Neural Network inference accelerators are becoming ubiquitous in modern SoCs and there is an ever-increasing demand for tighter and tighter throughput constraints and lower energy consumption. To explore the benefits that NCFET brings to NN inference regarding frequency, energy, and accuracy, we investigate different configurations of the multiply-add (MADD) circuit, which is the core computational unit in any NN accelerator. We demonstrate that, compared to the baseline 7nm FinFET technology, its negative capacitance counterpart reduces the energy by 55%, without any frequency reduction. In addition, it enables leveraging higher computational precision, which results to a considerable improvement in the inference accuracy. Importantly, the achieved accuracy improvement comes also together with a significant energy reduction and without any loss in frequency

    Modeling the Interdependences between Voltage Fluctuation and BTI Aging

    Get PDF
    With technology scaling, the susceptibility of circuits to different reliability degradations is steadily increasing. Aging in transistors due to bias temperature instability (BTI) and voltage fluctuation in the power delivery network of circuits due to IR-drops are the most prominent. In this paper, we are reporting for the first time that there are interdependences between voltage fluctuation and BTI aging that are nonnegligible. Modeling and investigating the joint impact of voltage fluctuation and BTI aging on the delay of circuits, while remaining compatible with the existing standard design flow, is indispensable in order to answer the vital question, “what is an efficient (i.e., small, yet sufficient) timing guardband to sustain the reliability of circuit for the projected lifetime?” This is, concisely, the key goal of this paper. Achieving that would not be possible without employing a physics-based BTI model that precisely describes the underlying generation and recovery mechanisms of defects under arbitrary stress waveforms. For this purpose, our model is validated against varied semiconductor measurements covering a wide range of voltage, temperature, frequency, and duty cycle conditions. To bring reliability awareness to existing EDA tool flows, we create standard cell libraries that contain the delay information of cells under the joint impact of aging and IR-drop. Our libraries can be directly deployed within the standard design flow because they are compatible with existing commercial tools (e.g., Synopsys and Cadence). Hence, designers can leverage the mature algorithms of these tools to accurately estimate the required timing guardbands for any circuit despite its complexity. Our investigation demonstrates that considering aging and IR-drop effects independently, as done in the state of the art, leads to employing insufficient and thus unreliable guardbands because of the nonnegligible (on average 15% and up to 25%) underestimations. Importantly, considering interdependences between aging and IR-drop does not only allow correct guardband estimations, but it also results in employing more efficient guardbands

    Unveiling the Impact of IR-Drop on Performance Gain in NCFET-Based Processors

    Get PDF
    Negative capacitance field-effect transistor (NCFET) pushes the subthreshold swing beyond its fundamental limit of 60 mV/decade by incorporating a ferroelectric material within the gate-stack of transistor. Such a material manifests itself as an NC that provides an internal voltage amplification for the transistor resulting in higher ON-current levels. Hence, the performance of processors can be boosted while the operating voltage still remains the same. However, having an NC makes the total gate terminal capacitance larger. Although the impact of that on compensating the gained performance has already been studied in the literature, this paper is the first to explore the impact of NC on exacerbating the IR-drop problem in processors. In fact, voltage fluctuation in the power delivery network (PDN) due to IR-drops is one of the prominent sources of performance loss in processors, which necessitates adding timing guardbands to sustain a reliable operation during runtime. In this paper, we study NC-FinFET standard cells and processor for the 7-nm technology node. We demonstrate that NC, on the one hand, results in larger IR-drops due to the increase in current densities across the chip, which leads to a higher stress on the PDN. However, the internal voltage amplification provided by NC, on the other hand, compensates to some degree the voltage reduction caused by IR-drop. We investigate, from physics all the way to full-chip (GDSII) level, how the overall performance of a processor is affected under the impact that NC has on magnifying and compensating IR-drop

    NCFET-Aware Voltage Scaling

    Get PDF
    Negative Capacitance Field-Effect Transistor (NCFET) has recently attracted significant attention. In the NCFET technology with a thick ferroelectric layer, voltage reduction increases the leakage power, rather than decreases, due to the negative Drain-Induced Barrier Lowering (DIBL) effect. This work is the first to demonstrate the far-reaching consequences of such an inverse dependency w.r.t. the existing power management techniques. Moreover, this work is the first to demonstrate that state-of-the-art Dynamic Voltage Scaling (DVS) techniques are sub-optimal for NCFET. Our investigation revealed that the optimal voltage at which the total power is minimized is not necessarily at the point of the minimum voltage required to fulfill the performance constraint (as in traditional DVS). Hence, an NCFET-aware DVS is key for high energy efficiency. In this work, we therefore propose the first NCFET-aware DVS technique that selects the optimal voltage to minimize the power following the dynamics of workloads. Our experimental results of a multi-core system demonstrate that NCFET-aware DVS results in 20% on average, and up to 27% energy saving while still fulfilling the same performance constraint (i.e., no trade-offs) compared to traditional NCFET-unaware DVS techniques

    Minimizing Excess Timing Guard Banding Under Transistor Self-Heating Through Biasing at Zero-Temperature Coefficient

    Get PDF
    Self-Heating Effects (SHE) is known as one of the key reliability challenges in FinFET and beyond. Large timing guard bands are necessary, which we try to reduce. In this work, we propose operating (biasing) processors at Zero-Temperature Coefficient (ZTC) to contain (mitigate) SHE-induced delay. Operating at ZTC allows near-zero timing guard band to protect circuits against SHE. However, a trade-off is found between thermal timing guard band and performance loss from lowering the voltage

    Power-Efficient Heterogeneous Many-Core Design with NCFET Technology

    No full text
    corecore