19 research outputs found

    MODIFIED EDGE FED SIERPINSKI CARPET MINIATURIZED MICROSTRIP PATCH ANTENNA

    Get PDF
    This paper presented a modified edge fed Sierpinski carpet microstrip patch antenna for antenna miniaturization. The proposed design was etched as Sierpinski carpet to lower the antenna resonant frequency, which is used to reduce the conventional patch antenna size. After the Sierpinski carpet second iteration, the proposed antenna was modified by replacing the rectangular slot in the middle of the patch with a circular slot. Simulation results showed that the proposed antenna achieved 46.5% size reduction when compared with the main patch antenna without affecting the resonant frequency and radiation patterns. http://dx.doi.org/10.4314/njt.v35i3.2

    The roles of bile acids and applications of microencapsulation technology in treating Type 1 diabetes mellitus

    No full text
    Type 1 diabetes mellitus (T1DM) is an autoimmune disease characterized by the loss of glycemic control. Recent studies have shown significant inflammation and disturbed bile acid homeostasis, associated with T1DM. Bile acids are endogenously produced as a result of cholesterol catabolism in the liver and solely metabolized by gut microflora. This review investigates their potential oral delivery in T1DM using targeted delivery and encapsulation technologies. A sensitive and selective search was carried out using different search engines and databases. Keywords used included diabetes mellitus, bile acids and inflammation. To conclude, bile acids have a significant impact on diabetes symptoms and, when microencapsulated, may be used as an adjunct therapy to supplement T1DM treatment

    PCA3 noncoding RNA is involved in the control of prostate-cancer cell survival and modulates androgen receptor signaling

    No full text
    BACKGROUND: PCA3 is a non-coding RNA (ncRNA) that is highly expressed in prostate cancer (PCa) cells, but its functional role is unknown. To investigate its putative function in PCa biology, we used gene expression knockdown by small interference RNA, and also analyzed its involvement in androgen receptor (AR) signaling. METHODS: LNCaP and PC3 cells were used as in vitro models for these functional assays, and three different siRNA sequences were specifically designed to target PCA3 exon 4. Transfected cells were analyzed by real-time qRT-PCR and cell growth, viability, and apoptosis assays. Associations between PCA3 and the androgen-receptor (AR) signaling pathway were investigated by treating LNCaP cells with 100 nM dihydrotestosterone (DHT) and with its antagonist (flutamide), and analyzing the expression of some AR-modulated genes (TMPRSS2, NDRG1, GREB1, PSA, AR, FGF8, CdK1, CdK2 and PMEPA1). PCA3 expression levels were investigated in different cell compartments by using differential centrifugation and qRT-PCR. RESULTS: LNCaP siPCA3-transfected cells significantly inhibited cell growth and viability, and increased the proportion of cells in the sub G0/G1 phase of the cell cycle and the percentage of pyknotic nuclei, compared to those transfected with scramble siRNA (siSCr)-transfected cells. DHT-treated LNCaP cells induced a significant upregulation of PCA3 expression, which was reversed by flutamide. In siPCA3/LNCaP-transfected cells, the expression of AR target genes was downregulated compared to siSCr-transfected cells. The siPCA3 transfection also counteracted DHT stimulatory effects on the AR signaling cascade, significantly downregulating expression of the AR target gene. Analysis of PCA3 expression in different cell compartments provided evidence that the main functional roles of PCA3 occur in the nuclei and microsomal cell fractions. CONCLUSIONS: Our findings suggest that the ncRNA PCA3 is involved in the control of PCa cell survival, in part through modulating AR signaling, which may raise new possibilities of using PCA3 knockdown as an additional therapeutic strategy for PCa control
    corecore