37 research outputs found

    Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries

    Get PDF
    Background Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres. Methods This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries. Results In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia. Conclusion This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries

    The life-cycle of star formation in distant clusters

    No full text
    We analyse the detailed distribution of star-forming and post-starburst members in three distant (z = 0.31) galaxy clusters in terms of evolutionary sequences that incorporate secondary bursts of star formation on pre-existing stellar populations. Using the number density of spectroscopically-confirmed members on the EW(H\delta) versus B-R plane from existing data, and for a larger K'-limited sample on the U-I versus I-K' plane from newly-acquired infrared images, we demonstrate that the proportion of cluster members undergoing secondary bursts of star formation during the last ~2 Gyr prior to the epoch of observation is probably as high as 30 per cent of the member galaxies. A key observation leading to this conclusion is the high proportion of H\delta strong galaxies in all three clusters. The evolutionary modelling, whilst necessarily approximate, returns the correct proportions of galaxies in various stages of the star formation cycle both in terms of spectral and colour properties. HST images for the three clusters indicate a high proportion of the active members show signs of interaction, whereas the H\delta strong galaxies appear mainly to be regular spheroidals. We examine results from recent merger simulations in the context of the populations in these clusters and confirm that the merging of individual galaxies, triggered perhaps by the hierarchical assembly of rich clusters at this epoch, is consistent with the star formation cycle identified in our data. The implications of such a high fraction of active objects in cluster cores is briefly discussed.Comment: uuencoded compressed postscript, without figures. The preprint is available with figures at http://www.ast.cam.ac.uk/preprint/PrePrint.htm

    Star Formation Cycle in Distant Clusters

    No full text
    corecore