7 research outputs found

    A decision support system for sustainable agriculture and food loss reduction under uncertain agricultural policy frameworks

    Get PDF
    The EU Green Deal requires the reduction in pesticides and fertilisers in food crop production, whilst the sustainable development goals require reductions in food loss and food waste. In a complex and interacting system like the food system, these goals are difficult to coordinate. Here, we show an approach using Bayesian network modelling for decision support. Bayesian networks are important tools for modelling complex systems which may develop emergent behaviour and for providing quantitative comparisons for different candidate policies, approaches or interventions under the Integrating Decision Support System paradigm. Using lettuce as an exemplar crop, we demonstrate that expected food loss changes under different agricultural input reduction and integrated pest management combinations can be quantified to aid decision making for growers

    Mapping Opuntia stricta in the arid and semi-arid environment of Kenya using sentinel-2 imagery and ensemble machine learning classifiers

    Get PDF
    Globally, grassland biomes form one of the largest terrestrial covers and present critical social–ecological benefits. In Kenya, Arid and Semi-arid Lands (ASAL) occupy 80% of the landscape and are critical for the livelihoods of millions of pastoralists. However, they have been invaded by Invasive Plant Species (IPS) thereby compromising their ecosystem functionality. Opuntia stricta, a well-known IPS, has invaded the ASAL in Kenya and poses a threat to pastoralism, leading to livestock mortality and land degradation. Thus, identification and detailed estimation of its cover is essential for drawing an effective management strategy. The study aimed at utilizing the Sentinel-2 multispectral sensor to detect Opuntia stricta in a heterogeneous ASAL in Laikipia County, using ensemble machine learning classifiers. To illustrate the potential of Sentinel-2, the detection of Opuntia stricta was based on only the spectral bands as well as in combination with vegetation and topographic indices using Extreme Gradient Boost (XGBoost) and Random Forest (RF) classifiers to detect the abundance. Study results showed that the overall accuracies of Sentinel 2 spectral bands were 80% and 84.4%, while that of combined spectral bands, vegetation, and topographic indices was 89.2% and 92.4% for XGBoost and RF classifiers, respectively. The inclusion of topographic indices that enhance characterization of biological processes, and vegetation indices that minimize the influence of soil and the effects of atmosphere, contributed by improving the accuracy of the classification. Qualitatively, Opuntia stricta spatially was found along river banks, flood plains, and near settlements but limited in forested areas. Our results demonstrated the potential of Sentinel-2 multispectral sensors to effectively detect and map Opuntia stricta in a complex heterogeneous ASAL, which can support conservation and rangeland management policies that aim to map and list threatened areas, and conserve the biodiversity and productivity of rangeland ecosystems

    Validating commonly used drought indicators in Kenya

    Get PDF
    Drought is a complex natural hazard that can occur in any climate and affect every aspect of society. To better prepare and mitigate the impacts of drought, various indicators can be applied to monitor and forecast its onset, intensity, and severity. Though widely used, little is known about the efficacy of these indicators which restricts their role in important decisions. Here, we provide the first validation of 11 commonly-used drought indicators by comparing them to pasture and browse condition data collected on the ground in Kenya. These ground-based data provide an absolute and relative assessment of the conditions, similar to some of the drought indicators. Focusing on grass and shrublands of the arid and semi-arid lands, we demonstrate there are strong relationships between ground-based pasture and browse conditions, and satellite-based drought indicators. The Soil Adjusted Vegetation Index (SAVI) has the best relationship, achieving a mean r2 score of 0.70 when fitted against absolute pasture condition. Similarly, the 3-month Vegetation Health Index (VHI3M) reached a mean r2 score of 0.62 when fitted against a relative pasture condition. In addition, we investigated the Kenya-wide drought onset threshold for the 3-month average Vegetation Condition Index (VCI3M; VCI3M<35), which is used by the country’s drought early warning system. Our results show large disparities in thresholds across different counties. Understanding these relationships and thresholds are integral to developing effective and efficient drought early warning systems (EWS). Our work offers evidence for the effectiveness of some of these indicators as well as practical thresholds for their use

    Assessing drivers of intra-seasonal grassland dynamics in a Kenyan savannah using digital repeat photography

    Get PDF
    Understanding grassland dynamics and their relationship to weather and grazing is critical for pastoralists whose livelihoods depend on grassland productivity. Studies investigating the impacts of climate and human factors on inter-seasonal grassland dynamics have focused mostly on changes to vegetation structure. Yet, quantifying the impact of these on the inter-seasonal dynamics of specific grassland communities is not known. This study uses digital repeat photography to examine how intra-seasonal grassland dynamics of different grassland communities are affected by precipitation, temperature, and grazing in a heterogeneous semi-arid savannah in Kenya. A low-cost digital repeat camera network allowed for fine-scale temporal and spatial variability analysis of grassland dynamics and grazing intensity. Over all grass communities, our results show precipitation driving mainly early-season and in some cases mid-season flushing, temperature driving end-of-season senescence, and grazing influencing mid-season declines. Yet, our study quantifies how these three drivers do not uniformly impact grassland species communities. Specifically, Cynodon and Cynodon/Bothriochloa communities are rapidly and positively associated with precipitation, where mid-season declines in Cynodon communities are associated with grazing and late-season declines in Cynodon/Bothriochloa communities are associated with temperature increases. Setaria communities, on the other hand, have weaker associations with the drivers, with limited positive associations with precipitation and grazing. Kunthii/Digitaria diverse communities had no association with the three drivers. Highly diverse mixed communities were associated with increased precipitation and temperature, as well as lower intensity grazing. Our research sheds light on the complex interactions between plants, animals, and weather. Furthermore, this study also demonstrates the potential of digital repeated photography to inform about fine-scale spatial and temporal patterns of semi-arid grassland vegetation and grazing, with the goal of assisting in the formulations of management practises that better capture the intra-annual variability of highly heterogeneous dryland systems

    Forecasting vegetation condition for drought early warning systems in pastoral communities in Kenya

    Get PDF
    Droughts are a recurring hazard in sub-Saharan Africa, that can wreak huge socioeconomic costs. Acting early based on alerts provided by early warning systems (EWS) can potentially provide substantial mitigation, reducing the financial and human cost. However, existing EWS tend only to monitor current, rather than forecast future, environmental and socioeconomic indicators of drought, and hence are not always sufficiently timely to be effective in practice. Here we present a novel method for forecasting satellite-based indicators of vegetation condition. Specifically, we focused on the 3-month Vegetation Condition Index (VCI3M) over pastoral livelihood zones in Kenya, which is the indicator used by the Kenyan National Drought Management Authority (NDMA). Using data from MODIS and Landsat, we apply linear autoregression and Gaussian process modelling methods and demonstrate high forecasting skill several weeks ahead. As a bench mark we predicted the drought alert marker used by NDMA (VCI3M<35). Both of our models were able to predict this alert marker four weeks ahead with a hit rate of around 89% and a false alarm rate of around 4%, or 81% and 6% respectively six weeks ahead. The methods developed here can thus identify a deteriorating vegetation condition well and sufficiently in advance to help disaster risk managers act early to support vulnerable communities and limit the impact of a drought hazard
    corecore