21 research outputs found

    Significant Bacteriuria Among Asymptomatic Antenatal Clinic Attendees In Ibadan, Nigeria

    Get PDF
    Untreated asymptomatic bacteriuria can lead to urinary tract infection (UTI) in pregnancy with devastating maternal and neonatal effects such as prematurity and low birth weight, higher fetal mortality rates and significant maternal morbidity. We carried out a two year (April 2007 to March 2009) cross-sectional epidemiological study to determine the prevalence of significant bacteriuria among asymptomatic antenatal clinic attendees at two antenatal clinics (ANCs) in University College Hospital and Adeoyo Maternity Hospital, both in Ibadan, Nigeria

    Qualitative performance and economic analysis of low cost solar fish driers in Sub-Saharan Africa

    Get PDF
    Qualitative performance and economic analysis of five low cost solar driers were evaluated at the Zoology and Physics Laboratories of the University of Ilorin, Ilorin, Nigeria. The solar driers were constructed from mosquito net, plastic, aluminum and glass with black stone inserted in it. The driers were found to be better than the other driers because they are cheap, reliable, safe to use, easy to repair, well insulated, and cost effective. The solar driers are compact, efficient with drying of fish with lowest moisture content achieved within a few days and the dried products of good quality, with long shelf life, highly acceptable to consumers. The driers save man-hour, money, use renewable energy, with no operational or maintenance costs. The driers have a long life span, with net income to fisher folks very high and the payback time for the driers very low.  The adoption of the driers will contribute to the economy of rural populace in the developing countries where there is no electricity and the challenges of deforestation are becoming prominent. The improved low cost solar driers will ensure food safety and security and assist in combating climate change resulting from burning of wood and fossil fuel

    Whole-genome sequencing illuminates the evolution and spread of multidrug-resistant tuberculosis in Southwest Nigeria.

    Get PDF
    Nigeria has an emerging problem with multidrug-resistant tuberculosis (MDR-TB). Whole-genome sequencing was used to understand the epidemiology of tuberculosis and genetics of multi-drug resistance among patients from two tertiary referral centers in Southwest Nigeria. In line with previous molecular epidemiology studies, most isolates of Mycobacterium tuberculosis from this dataset belonged to the Cameroon clade within the Euro-American lineage. Phylogenetic analysis showed this clade was undergoing clonal expansion in this region, and suggests that it was involved in community transmission of sensitive and multidrug-resistant tuberculosis. Five patients enrolled for retreatment were infected with pre-extensively drug resistant (pre-XDR) due to fluoroquinolone resistance in isolates from the Cameroon clade. In all five cases resistance was conferred through a mutation in the gyrA gene. In some patients, genomic changes occurred in bacterial isolates during the course of treatment that potentially led to decreased drug susceptibility. We conclude that inter-patient transmission of resistant isolates, principally from the Cameroon clade, contributes to the spread of MDR-TB in this setting, underscoring the urgent need to curb the spread of multi-drug resistance in this region

    Emergence and spread of two SARS-CoV-2 variants of interest in Nigeria.

    Get PDF
    Identifying the dissemination patterns and impacts of a virus of economic or health importance during a pandemic is crucial, as it informs the public on policies for containment in order to reduce the spread of the virus. In this study, we integrated genomic and travel data to investigate the emergence and spread of the SARS-CoV-2 B.1.1.318 and B.1.525 (Eta) variants of interest in Nigeria and the wider Africa region. By integrating travel data and phylogeographic reconstructions, we find that these two variants that arose during the second wave in Nigeria emerged from within Africa, with the B.1.525 from Nigeria, and then spread to other parts of the world. Data from this study show how regional connectivity of Nigeria drove the spread of these variants of interest to surrounding countries and those connected by air-traffic. Our findings demonstrate the power of genomic analysis when combined with mobility and epidemiological data to identify the drivers of transmission, as bidirectional transmission within and between African nations are grossly underestimated as seen in our import risk index estimates

    A year of genomic surveillance reveals how the SARS-CoV-2 pandemic unfolded in Africa.

    Get PDF
    The progression of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic in Africa has so far been heterogeneous, and the full impact is not yet well understood. In this study, we describe the genomic epidemiology using a dataset of 8746 genomes from 33 African countries and two overseas territories. We show that the epidemics in most countries were initiated by importations predominantly from Europe, which diminished after the early introduction of international travel restrictions. As the pandemic progressed, ongoing transmission in many countries and increasing mobility led to the emergence and spread within the continent of many variants of concern and interest, such as B.1.351, B.1.525, A.23.1, and C.1.1. Although distorted by low sampling numbers and blind spots, the findings highlight that Africa must not be left behind in the global pandemic response, otherwise it could become a source for new variants

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance.

    Get PDF
    Investment in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing in Africa over the past year has led to a major increase in the number of sequences that have been generated and used to track the pandemic on the continent, a number that now exceeds 100,000 genomes. Our results show an increase in the number of African countries that are able to sequence domestically and highlight that local sequencing enables faster turnaround times and more-regular routine surveillance. Despite limitations of low testing proportions, findings from this genomic surveillance study underscore the heterogeneous nature of the pandemic and illuminate the distinct dispersal dynamics of variants of concern-particularly Alpha, Beta, Delta, and Omicron-on the continent. Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve while the continent faces many emerging and reemerging infectious disease threats. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century
    corecore