141 research outputs found

    Deep Discrete Hashing with Self-supervised Pairwise Labels

    Full text link
    Hashing methods have been widely used for applications of large-scale image retrieval and classification. Non-deep hashing methods using handcrafted features have been significantly outperformed by deep hashing methods due to their better feature representation and end-to-end learning framework. However, the most striking successes in deep hashing have mostly involved discriminative models, which require labels. In this paper, we propose a novel unsupervised deep hashing method, named Deep Discrete Hashing (DDH), for large-scale image retrieval and classification. In the proposed framework, we address two main problems: 1) how to directly learn discrete binary codes? 2) how to equip the binary representation with the ability of accurate image retrieval and classification in an unsupervised way? We resolve these problems by introducing an intermediate variable and a loss function steering the learning process, which is based on the neighborhood structure in the original space. Experimental results on standard datasets (CIFAR-10, NUS-WIDE, and Oxford-17) demonstrate that our DDH significantly outperforms existing hashing methods by large margin in terms of~mAP for image retrieval and object recognition. Code is available at \url{https://github.com/htconquer/ddh}

    A Graph Theoretic Approach for Object Shape Representation in Compositional Hierarchies Using a Hybrid Generative-Descriptive Model

    Full text link
    A graph theoretic approach is proposed for object shape representation in a hierarchical compositional architecture called Compositional Hierarchy of Parts (CHOP). In the proposed approach, vocabulary learning is performed using a hybrid generative-descriptive model. First, statistical relationships between parts are learned using a Minimum Conditional Entropy Clustering algorithm. Then, selection of descriptive parts is defined as a frequent subgraph discovery problem, and solved using a Minimum Description Length (MDL) principle. Finally, part compositions are constructed by compressing the internal data representation with discovered substructures. Shape representation and computational complexity properties of the proposed approach and algorithms are examined using six benchmark two-dimensional shape image datasets. Experiments show that CHOP can employ part shareability and indexing mechanisms for fast inference of part compositions using learned shape vocabularies. Additionally, CHOP provides better shape retrieval performance than the state-of-the-art shape retrieval methods.Comment: Paper : 17 pages. 13th European Conference on Computer Vision (ECCV 2014), Zurich, Switzerland, September 6-12, 2014, Proceedings, Part III, pp 566-581. Supplementary material can be downloaded from http://link.springer.com/content/esm/chp:10.1007/978-3-319-10578-9_37/file/MediaObjects/978-3-319-10578-9_37_MOESM1_ESM.pd

    BlinkML: Efficient Maximum Likelihood Estimation with Probabilistic Guarantees

    Full text link
    The rising volume of datasets has made training machine learning (ML) models a major computational cost in the enterprise. Given the iterative nature of model and parameter tuning, many analysts use a small sample of their entire data during their initial stage of analysis to make quick decisions (e.g., what features or hyperparameters to use) and use the entire dataset only in later stages (i.e., when they have converged to a specific model). This sampling, however, is performed in an ad-hoc fashion. Most practitioners cannot precisely capture the effect of sampling on the quality of their model, and eventually on their decision-making process during the tuning phase. Moreover, without systematic support for sampling operators, many optimizations and reuse opportunities are lost. In this paper, we introduce BlinkML, a system for fast, quality-guaranteed ML training. BlinkML allows users to make error-computation tradeoffs: instead of training a model on their full data (i.e., full model), BlinkML can quickly train an approximate model with quality guarantees using a sample. The quality guarantees ensure that, with high probability, the approximate model makes the same predictions as the full model. BlinkML currently supports any ML model that relies on maximum likelihood estimation (MLE), which includes Generalized Linear Models (e.g., linear regression, logistic regression, max entropy classifier, Poisson regression) as well as PPCA (Probabilistic Principal Component Analysis). Our experiments show that BlinkML can speed up the training of large-scale ML tasks by 6.26x-629x while guaranteeing the same predictions, with 95% probability, as the full model.Comment: 22 pages, SIGMOD 201

    A multi-biometric iris recognition system based on a deep learning approach

    Get PDF
    YesMultimodal biometric systems have been widely applied in many real-world applications due to its ability to deal with a number of significant limitations of unimodal biometric systems, including sensitivity to noise, population coverage, intra-class variability, non-universality, and vulnerability to spoofing. In this paper, an efficient and real-time multimodal biometric system is proposed based on building deep learning representations for images of both the right and left irises of a person, and fusing the results obtained using a ranking-level fusion method. The trained deep learning system proposed is called IrisConvNet whose architecture is based on a combination of Convolutional Neural Network (CNN) and Softmax classifier to extract discriminative features from the input image without any domain knowledge where the input image represents the localized iris region and then classify it into one of N classes. In this work, a discriminative CNN training scheme based on a combination of back-propagation algorithm and mini-batch AdaGrad optimization method is proposed for weights updating and learning rate adaptation, respectively. In addition, other training strategies (e.g., dropout method, data augmentation) are also proposed in order to evaluate different CNN architectures. The performance of the proposed system is tested on three public datasets collected under different conditions: SDUMLA-HMT, CASIA-Iris- V3 Interval and IITD iris databases. The results obtained from the proposed system outperform other state-of-the-art of approaches (e.g., Wavelet transform, Scattering transform, Local Binary Pattern and PCA) by achieving a Rank-1 identification rate of 100% on all the employed databases and a recognition time less than one second per person

    Dynamic properties of bacteriorhodopsin exposed to ultrashort light pulses

    No full text
    Bacteriorhodopsin (BR) in its metastable form was used for pulsed holographic recording at λ ∼ 400 nm. It is shown that the properties of BR are insensitive to changes in the writing light\u27s pulse width. When holograms are recorded in the BR stable form (λ ∼ 600 nm), the sensitivity of the medium and the diffraction efficiency of those holograms are reduced proportionally to the decrease in the light\u27s pulse width. © 2000 Optical Society of America
    • …
    corecore