143 research outputs found
Interpreting Reactor Antineutrino Anomalies with STEREO data
Anomalies in past neutrino measurements have led to the discovery that theseparticles have non-zero mass and oscillate between their three flavors whenthey propagate. In the 2010's, similar anomalies observed in the antineutrinospectra emitted by nuclear reactors have triggered the hypothesis of theexistence of a supplementary neutrino state that would be sterile i.e. notinteracting via the weak interaction. The STEREO experiment was designed tostudy this scientific case that would potentially extend the Standard Model ofParticle Physics. Here we present a complete study based on our full set ofdata with significantly improved sensitivity. Installed at the ILL (InstitutLaue Langevin) research reactor, STEREO has accurately measured theantineutrino energy spectrum associated to the fission of 235U. Thismeasurement confirms the anomalies whereas, thanks to the segmentation of theSTEREO detector and its very short mean distance to the core (10~m), the samedata reject the hypothesis of a light sterile neutrino. Such a directmeasurement of the antineutrino energy spectrum suggests instead that biases inthe nuclear experimental data used for the predictions are at the origin of theanomalies. Our result supports the neutrino content of the Standard Model andestablishes a new reference for the 235U antineutrino energy spectrum. Weanticipate that this result will allow to progress towards finer tests of thefundamental properties of neutrinos but also to benchmark models and nucleardata of interest for reactor physics and for observations of astrophysical orgeo-neutrinos.<br
Interpreting Reactor Antineutrino Anomalies with STEREO data
Anomalies in past neutrino measurements have led to the discovery that these
particles have non-zero mass and oscillate between their three flavors when
they propagate. In the 2010's, similar anomalies observed in the antineutrino
spectra emitted by nuclear reactors have triggered the hypothesis of the
existence of a supplementary neutrino state that would be sterile i.e. not
interacting via the weak interaction. The STEREO experiment was designed to
study this scientific case that would potentially extend the Standard Model of
Particle Physics. Here we present a complete study based on our full set of
data with significantly improved sensitivity. Installed at the ILL (Institut
Laue Langevin) research reactor, STEREO has accurately measured the
antineutrino energy spectrum associated to the fission of 235U. This
measurement confirms the anomalies whereas, thanks to the segmentation of the
STEREO detector and its very short mean distance to the core (10~m), the same
data reject the hypothesis of a light sterile neutrino. Such a direct
measurement of the antineutrino energy spectrum suggests instead that biases in
the nuclear experimental data used for the predictions are at the origin of the
anomalies. Our result supports the neutrino content of the Standard Model and
establishes a new reference for the 235U antineutrino energy spectrum. We
anticipate that this result will allow to progress towards finer tests of the
fundamental properties of neutrinos but also to benchmark models and nuclear
data of interest for reactor physics and for observations of astrophysical or
geo-neutrinos.Comment: 21 pages, 13 figure
Resilient cooling strategies – A critical review and qualitative assessment
The global effects of climate change will increase the frequency and intensity of extreme events such as heatwaves and power outages, which have consequences for buildings and their cooling systems. Buildings and their cooling systems should be designed and operated to be resilient under such events to protect occupants from potentially dangerous indoor thermal conditions. This study performed a critical review on the state-of-the-art of cooling strategies, with special attention to their performance under heatwaves and power outages. We proposed a definition of resilient cooling and described four criteria for resilience—absorptive capacity, adaptive capacity, restorative capacity, and recovery speed —and used them to qualitatively evaluate the resilience of each strategy. The literature review and qualitative analyses show that to attain resilient cooling, the four resilience criteria should be considered in the design phase of a building or during the planning of retrofits. The building and relevant cooling system characteristics should be considered simultaneously to withstand extreme events. A combination of strategies with different resilience capacities, such as a passive envelope strategy coupled with a low-energy space-cooling solution, may be needed to obtain resilient cooling. Finally, a further direction for a quantitative assessment approach has been pointed out
Improved FIFRELIN de-excitation model for neutrino applications
The precise modeling of the de-excitation of Gd isotopes is of great interest
for experimental studies of neutrinos using Gd-loaded organic liquid
scintillators. The FIFRELIN code was recently used within the purposes of the
STEREO experiment for the modeling of the Gd de-excitation after neutron
capture in order to achieve a good control of the detection efficiency. In this
work, we report on the recent additions in the FIFRELIN de-excitation model
with the purpose of enhancing further the de-excitation description.
Experimental transition intensities from EGAF database are now included in the
FIFRELIN cascades, in order to improve the description of the higher energy
part of the spectrum. Furthermore, the angular correlations between {\gamma}
rays are now implemented in FIFRELIN, to account for the relative anisotropies
between them. In addition, conversion electrons are now treated more precisely
in the whole spectrum range, while the subsequent emission of X rays is also
accounted for. The impact of the aforementioned improvements in FIFRELIN is
tested by simulating neutron captures in various positions inside the STEREO
detector. A repository of up-to-date FIFRELIN simulations of the Gd isotopes is
made available for the community, with the possibility of expanding for other
isotopes which can be suitable for different applications.Comment: Corrected typos on author names on arXiv metadat
Fast neutron background characterization of the future Ricochet experiment at the ILL research nuclear reactor
The future Ricochet experiment aims at searching for new physics in the
electroweak sector by providing a high precision measurement of the Coherent
Elastic Neutrino-Nucleus Scattering (CENNS) process down to the sub-100 eV
nuclear recoil energy range. The experiment will deploy a kg-scale
low-energy-threshold detector array combining Ge and Zn target crystals 8.8
meters away from the 58 MW research nuclear reactor core of the Institut Laue
Langevin (ILL) in Grenoble, France. Currently, the Ricochet collaboration is
characterizing the backgrounds at its future experimental site in order to
optimize the experiment's shielding design. The most threatening background
component, which cannot be actively rejected by particle identification,
consists of keV-scale neutron-induced nuclear recoils. These initial fast
neutrons are generated by the reactor core and surrounding experiments
(reactogenics), and by the cosmic rays producing primary neutrons and
muon-induced neutrons in the surrounding materials. In this paper, we present
the Ricochet neutron background characterization using He proportional
counters which exhibit a high sensitivity to thermal, epithermal and fast
neutrons. We compare these measurements to the Ricochet Geant4 simulations to
validate our reactogenic and cosmogenic neutron background estimations.
Eventually, we present our estimated neutron background for the future Ricochet
experiment and the resulting CENNS detection significance.Comment: 14 pages, 14 figures, 1 tabl
- …