8,182 research outputs found
Interplanetary shock waves associated with solar flares
The interaction of the earth's magnetic field with the solar wind is discussed with emphasis on the influence of solar flares. The geomagnetic storms are considerered to be the result of the arrival of shock wave generated by solar flares in interplanetary space. Basic processes in the solar atmosphere and interplanetary space, and hydromagnetic disturbances associated with the solar flares are discussed along with observational and theoretical problems of interplanetary shock waves. The origin of interplanetary shock waves is also discussed
High-energy particles associated with solar flares
High-energy particles, the so-called solar cosmic rays, are often generated in association with solar flares, and then emitted into interplanetary space. These particles, consisting of electrons, protons, and other heavier nuclei, including the iron-group, are accelerated in the vicinity of the flare. By studying the temporal and spatial varation of these particles near the earth's orbit, their storage and release mechanisms in the solar corona and their propagation mechanism can be understood. The details of the nuclear composition and the rigidity spectrum for each nuclear component of the solar cosmic rays are important for investigating the acceleration mechanism in solar flares. The timing and efficiency of the acceleration process can also be investigated by using this information. These problems are described in some detail by using observational results on solar cosmic rays and associated phenomena
Bose-Einstein Condensation in the presence of an artificial spin-orbit interaction
Bose-Einstein condensation in the presence of a synthetic spin-momentum
interaction is considered, focusing on the case where a Dirac or Rashba
potential is generated via a tripod scheme. We found that the ground states can
be either plane wave states or superpositions of them, each characterized by
their unique density distributions.Comment: 5 pages, no figure
Coherent molecular bound states of bosons and fermions near a Feshbach resonance
We analyze molecular bound states of atomic quantum gases near a Feshbach
resonance. A simple, renormalizable field theoretic model is shown to have
exact solutions in the two-body sector, whose binding energy agrees well with
observed experimental results in both Bosonic and Fermionic cases. These
solutions, which interpolate between BEC and BCS theories, also provide a more
general variational ansatz for resonant superfluidity and related problems.Comment: Minor changes -- to match the final published versio
Exact Solution of Strongly Interacting Quasi-One-Dimensional Spinor Bose Gases
We present an exact analytical solution of the fundamental system of
quasi-one-dimensional spin-1 bosons with infinite delta-repulsion. The
eigenfunctions are constructed from the wave functions of non-interacting
spinless fermions, based on Girardeau's Fermi-Bose mapping, and from the wave
functions of distinguishable spins. We show that the spinor bosons behave like
a compound of non-interacting spinless fermions and non-interacting
distinguishable spins. This duality is especially reflected in the spin
densities and the energy spectrum. We find that the momentum distribution of
the eigenstates depends on the symmetry of the spin function. Furthermore, we
discuss the splitting of the ground state multiplet in the regime of large but
finite repulsion.Comment: Revised to discuss large but finite interaction
Exchange cotunneling through quantum dots with spin-orbit coupling
We investigate the effects of spin-orbit interaction (SOI) on the exchange
cotunneling through a spinful Coulomb blockaded quantum dot. In the case of
zero magnetic field, Kondo effect is shown to take place via a Kramers doublet
and the SOI will merely affect the Kondo temperature. In contrast, we find that
the breaking of time-reversal symmetry in a finite field has a marked influence
on the effective Anderson, and Kondo models for a single level. The nonlinear
conductance can now be asymmetric in bias voltage and may depend strongly on
direction of the magnetic field. A measurement of the angle dependence of
finite-field cotunneling spectroscopy thus provides valuable information about
orbital, and spin degrees of freedom and their mutual coupling.Comment: 5 pages, 2 figure
Reflection Symmetries for Multiqubit Density Operators
For multiqubit density operators in a suitable tensorial basis, we show that
a number of nonunitary operations used in the detection and synthesis of
entanglement are classifiable as reflection symmetries, i.e., orientation
changing rotations. While one-qubit reflections correspond to antiunitary
symmetries, as is known for example from the partial transposition criterion,
reflections on the joint density of two or more qubits are not accounted for by
the Wigner Theorem and are well-posed only for sufficiently mixed states. One
example of such nonlocal reflections is the unconditional NOT operation on a
multiparty density, i.e., an operation yelding another density and such that
the sum of the two is the identity operator. This nonphysical operation is
admissible only for sufficiently mixed states.Comment: 9 page
Iterative solution of a Dirac equation with inverse Hamiltonian method
We solve a singe-particle Dirac equation with Woods-Saxon potentials using an
iterative method in the coordinate space representation. By maximizing the
expectation value of the inverse of the Dirac Hamiltonian, this method avoids
the variational collapse, in which an iterative solution dives into the Dirac
sea. We demonstrate that this method works efficiently, reproducing the exact
solutions of the Dirac equation.Comment: 4 pages, 3 figure
- …