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Coherent molecular bound states of bosons and fermions near a Feshbach resonance
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We analyze molecular bound states of atomic quantum gases near a Feshbach resonance. A simple, renor-
malizable field theoretic model is shown to have exact solutions in the two-body sector, whose binding energy
agrees well with observed experimental results in both Bosonic and Fermionic cases. These solutions, which
interpolate between BEC and BCS theories, also provide a more general variational ansatz for resonant
superfluidity and related problems.
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The coherent transformation of a cold atomic gas to mol-of the molecular state with respect to free atoms.
ecules in the vicinity of a photo-associatiffj or Feshbach Next, we consider a coherent process of Raman photo-
[2] resonance has enabled a fascinating probe of quantuassociation or a magnetic Feshbach resonance coupling, giv-
dynamical behavior in coupled atom-molecular systems, toing rise to an overall effective Hamiltonian term in the
gether with remarkably precise measurements of quanturhomo-nuclear casgnly with Boson$ [7,8],
binding energies. Recetrgggosg?ic experzignents have extended .
the available species s, °'Rb, and“°Na [3]. Experi- S0 L X Borad g2 L 3t
ments on ultracold degenerate Fermi gase$%fand °Li H=H,+ 2 Jd XWGWT+ W], @
atoms have resulted in spectacular demonstrations of mo- . o ]
lecular Bose-Einstein condens&®EC) formation[4,5] and O for the case of heteronuclear dimer formation involving
of possible fermion superfluid behavior in the BEC-BCS €ither fermions or boson®],
crossover regiofi6].
Since these are many-body systems, it is useful to try to H=H,+ ﬁXf d3x[‘i'$\if1‘if2+\if£‘iq\i’0]. (3)
develop the simplest possible field-theoretic model that can
explain their behavior. An essential feature of any correct ) . .
many-body treatment is that the basic theory must be able tg€€: X IS the bare atom-molecule coupling responsible for
reproduce the physics of the two-body interactions. In thidn€ conversion of free atom pairs into molecules and vice
paper, we combine previous analytic solutions of a coherversa. The heteronuclear case can Abe applied to Fermionic
ently coupled field theory7—9] with an exact renormaliza- atom pairs in different spin staté¥;, ¥) combining into a
tion of the coupling constanfd.0], in order to obtain analytic Bosonic moleculgWy), or pairs of Bosonic and Fermionic
predictions for the two-body bound states. This gives a uniatoms combining into a Fermionic molecule, or else to a
fied picture of any Feshbach resonance experiment and reglly Bosonic case where the atom pairs are not identical.
lated studieg7-20, provided a small number of observable  Bosonic homonuclear caséirst we consider the fully
parameters are available. The predictions will be comparegosonic uniform case of E@2), i.e., a single-species atomic
with experimental data and with coupled-channel calculaBEC (with m;=m) coupled to a molecular BEC, where the
tions. atomic background energy is chosen to be zero. We ignore
To quantitatively model these experiments, consider amnelastic collisions—which is a reasonable approximation at
effective Hamiltonian for the molecular fielé¥,) in the low density, and lekk=U,;, wherex is the bare atom-atom
closed channel and the atomic fieldk, ) in the free-atom ~ COUPling due taswave scattering. —
dissociation limit of the open channel: Here a momentum cutoff is implicity assumegj,_smce n
renormalizable theories one expects to obtain finite results
A R only after the infinities are absorbed through a redefinition of
Hi=Hg+ = f d3x2ij Uy oI, (1)  bare couplings. To manipulate integrals thapriori are di-
2 ' vergent, we regularize them by a simple cutoff: integrals

with the commutation(+) or anticommutation(—) relation OV‘?I_rhk arr]e restricted t¢k||_|< K:It an E@). h .
[\I’i(x,t),‘Iij(x’,t)]izéljﬁ(x—x’) for Bosonic or Fermionic e homogeneous Hamiltonian, E(), has an exac

_ . N eigenstate in the simplest two-particle sedtd/g]. In mo-
field operatorsV;, respectively. The free Hamiltonidty in- mentum space, we expand the field operatdigx) and

cludes the usual kinetic energy terms and the potential ener- ) ] - ~
gies (including internal energigsdue to the trap potential Y1(X) in terms of Fourier componenégk) andb(k), respec-

fiVi(x), while U; is the atom-atom, atom-molecule, and tively, ~with — commutation  relations [ak),a"(k")]
molecule-molecule coupling due ®wave scattering. The =[b(k),bf(k’")]=8(k-k’). Including a cutoffK, the (unnor-
atomic and molecular masses ang, andmy=m;+m,, and  malized two-particle eigenstate corresponding to the zero
E=%A[Vo(0)-V1(0)—V,(0)] gives the bare energy detuning center-of-mass momentum is given [#;8]
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\ A KBk G(K)~, - N/2 methods from scattering theof$0], which has some subtle
W) = aT(0)+f WbT(k)bT(‘ k)| 0), features. In particular, a repulsive contact potential with
lkl=o &7 x>0 has no effect—it does not lead to scattering in three-
(4) dimensional field theory. However, either positive or nega-
tive scattering lengths can be generated from the same type

wherg N=2 in the exactly SOI.UbIe twq-pa_rtlcle case, and of attractive contact potential witk<<0, depending on the
G(k) is the atomic pair-correlation function in Fourier spaceJE

hi h - f lecule with | imiting procedure: if it is carried out with sufficiently deep
This coherent superposition of a molecule with correlated, o ntials to allow a bound state to form in the atomic field

pairs of atoms can be viewed as a “dressed” molecule. MOrgy 2| then a positive scattering length is possible even
generally, this is also a useful low-density variational ansatz iih an attractive short-range potential.

for N> 2 particles, where it describes a BEC of dressed mol-
ecules[7,8].

Fermionic or heteronuclear cas®&ext, we wish to con-
sider the important case of Fermionic atom pdissth m;
=my,=m) in different spin states combining into a Bosonic
molecule. This is especially relevant to the studies of ultra
cold Fermi gasef4—6] in the region of resonant superfluid-
ity and BEC-BCS crossover. These experiments are notab
for the greatly reduced inelastic loss rate from atom-
molecular collisions, due to Pauli blockifgZ2]. In this Fer-
mionic case, we only have awave coupling between the
different fermions, so thak=Uj,. In addition, the final re-
sults of this section can be applied to heteronuclear mol- e

ecules(with either statistics of the constituent atomsxcept ize\c/ivignosvtvazvtISh to re;’\r’]gté Eg(&?é:r}[;ii;mstﬁ; tl?rii[eor:‘ci;rpag_
that the massm has to be replaced byng, where m momentum cﬁoo,ﬂféo,we obt%in the foIIovgin simple analgtic
=mym,/(m;+my) is the reduced mass. ' 9 P y

The Hamiltonian(3) relevant to this case, also has an result
exact eigenstate in the two-partic{dl=2) sector[9]. Ex- SCﬁXS\’Eb
panding the field operato; ,(x) in terms of Fourier com- Eo=-Ey- 1 2Ck e (7)
ponentsb; 5(k), the eigenstate is now given by orp

The renormalizatiorj10] expresses the bare values as
=T'ko, x=T'x0, aNdE,=Eq+shB'x3/2, in terms of the ob-
served or renormalized values, xo, andE,. In the Fesh-
bach resonance case, for definitené&gs; Au(B—By). Here,
the cutoffK is included through a scaling parametér (1
—Bro) "%, where B=mK/(2m?h), ko=4mhapg/m, and ap, is
Qe background-wave scattering length for the atoms. In the
omonuclear casedu=2u,—uy, IS the magnetic moment
difference between the atomic and the bound molecular
channels, and@, is the magnetic field corresponding to the
resonance, while in the heteronuclear cade,=pu+u,

where C=m??/(8#?). Using Ep=Au(B-By), Eq. (7) can
A © %k Gk, n N2 also be rewritten in terms of the magnetic fields, so that the
WMy = [ aT(0) + f ———>bl(kbi(-k) | 0). ¢ TEWTT 'ag A
K=o (27) resulting binding energy can be directly compared with the
experimental data.
®) In the JILA ®Rb experimentg2,21], the creation of a
As before, this is also a useful variational ansatz for thehomonuclear dressed molecular state at a giBevalue is
N-particle(N>2) ground state, where it extends BCS theoryfollowed by a rapid change in the magnetic field which al-
to include a coherent molecular field. lows an interference fringe to be observed in the remaining
Exact eigenvaluesin either the homonuclear or hetero- total number of atoms. The reason for the fringe is due to the
nuclear case, the exact energy eigenvalue corresponding f@ct that in a dynamical experiment, paired atoms in the
the two-particle eigenstat@N=2) is known[8,9]. Introduc-  dressed molecular wave function can interfere constructively
ing a multiplicity parameters, wheres=1 for the homo- ©OF destructively with condensate atoms that are not in the
nuclear case, and=2 for the Fermionic or heteronuclear 9round-state wave function. The resulting interference pat-
case, we find that tern oscillates with a frequency corresponding to the dressed
molecular binding energy.
hsy? 2firgm |7t A2 A graphical solution of Eq(7), i.e., the binding energ,
T | Kt K —tarnk(rgk) | me’ 6 vsBfor the JILA®RDb experimenf2,21], is plotted in Fig. 1,
together with experimentally observed Ramsey fringe fre-
For real and positiver,, this corresponds to a bound state quencies, which are interpreted in the experiment as a
with negative energy, and the resulting binding energy isdressed molecular binding energy. The agreement between
E,=-E. The quantityry is the correlation radius or the effec- this simple analytic result and the experimentally observed
tive size of the dressed molecule. The right-hand side of Ecpinding energy(as well as the coupled-channel calculation
(6) needs to be solved fayp, or equivalently for the binding [10]) is excellent.
energyE,=#2/(mrd) as a function ofE,, but in general it Binding energy measurements were also carried out for
has no explicit solution. the case of Fermionit’K atoms in two different spin states
Next, it is useful to re-express the bare Hamiltonian pa-combining into a Bosonic molecul[d]. In Fig. 2 we plot the
rameters in terms of renormalized observable parameters thatlution to Eq.(7), i.e., the binding energ¥, vs the mag-
are invariant at large momentum cutoff. We therefore includenetic field B, for this experiment, where we also see a good
a nonperturbative renormalization using integral equatioragreement between the theory and experiment.

E=E,
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1200 ‘ ‘ Xo can be expressed via AB as follows:
1000+ 1 Xo= \"87TabgA/-LA_B/('Sn:D- . o

In the opposite limit of larges,, i.e., for magnetic fields
800¢ ] far away from the resonance, the same equatingives

linear dependence &, on Ey (and hence oB) as expected,
Ep=-Eq+shix3/ (2xo), including a constant energy shift.
400¢ 1 This linear behavior is not accessible with the resonant scat-
tering theory result oE,=#2/ma(B)>.
______________ For C| k| VEp<1, i.e., either for small background scat-
05 A 160 60 tering |apg or small bim:iing energiek, near the resonance,
B (G) we can neglect @kyVE, in the denominator of the s%ond
term in Eq.(7) and obtain a quadratic with respect {&,,.
FIG. 1. Binding energyE, vs the magnetic field for the®Rb  This has the following explicit solution:
experimen{2]. The parameter values are taken from the subsequent 25
high-precision measurements on the same sy$&dfn By=155 G E o~ —E.- (sChxp) l1 - = 1 ®)
andapg=-443, whereay is the Bohr radius. In addition, we take b 0 2 (sChxd)? '
X0=2.84x107* m*¥?/s and Au=-2.23ug [23], where ug is the
Bohr magneton. The solid line is our theoretical result, &g,  Which (for s=1) coincides with Eq(21) of Ref. [17]. This
while the dashed line is the result of E@®). The circles are the result formally incorporates the above-mentioned quadratic
experimental data of Ref21]. dependence ofE, on E, near the resonance where
4E,/ (sChy3)?<1, and the linear dependence far away from
Near-threshold physicsThere are common features with the resonance. The quadratic dependence is in qualitative
either Fermionic and Bosonic atoms. All results are ex-agreement with the behavior found from our exact result.
pressed in terms of the four observable parametgrs«, However, the linear partE,=-Ey)—while giving the cor-
Apu, By, and are clearly independent of the cutoff, as onerect slope of the binding energy—does not account for the
would expect from a renormalizable theory. There are twaenergy shift termsiy3/(2x,) due to the renormalization of

6001

E/h (kHz)

200

cases corresponding to different signskgf E,. This leads to a discrepancy seen in Figdashed ling
(1) Attractive case. lfa,q<0, thenE, is a single-valued away from the resonance, and is due to the fact that the
function of B, so there is only one solution branch. assumption ofc| xy| VE, <1 used to obtain Eq8) is incon-

(2) Repulsive case. lf,g>0, thenE, is a double-valued  sistent with the case of large binding energies under consid-
function of B, so there are two solution branches. This casesration. We note here that it is also possible to obtain the
has a bound state in the atomic channel. exact result from the molecular Green’s function method of

In all cases, the physics near threshold is crucial to underRef. [17], if the relevant self-energy term is included without
standing either type of experiment. For small binding enerapproximation[25].
gies in the vicinity of the resonance, K@) gives a quadratic The relative fraction of the atomic and molecular compo-
depzendencg OE, on E; (or on the magnetic field): E,  nents in the two-particle eigenstate can be calculated using
2.Eo/(3(7‘){0)2’ whereEy=Au(B-Bp). This is in agreement e conserved total number of atomic particliis N, + 2N,
‘LV;EQ/ the s;mple resonant scattering theory result tE@t (or N:N1+ N2+ ZNO in the Fermionic cageAt low density,
=#i“/ma(B)- near the resonandd8,24. Here, the effective e .

the closed-channel molecular fraction(iacluding a factor

sqatterlng length isa(B)=ay 1-AB/(B-Bg)], AB is the . of 2 to reflect the fact that each molecule consists of two
width of the resonance, and the atom-molecule COUPI'n%toms)'

600 2Ng/N= (1 + 2F/s)™L. (9)

500 1 Here, F= [d®kG?%(k)/(2m)%, and the correlation function
— 400 G(k) is given by a Lorentzian
I 2.2
= 300 G(k) = Gy/(1 +1gk?), (10)
W 200 where k:|k|,_ Gozsnyorgl[Zﬁ(abg—_ro)],_ and we have al-

ready taken into account renormalization. Taking the integral
100 1 in F we obtain that
‘ . ‘ 2 312, 2 3/2 -2
%0 221 222 223 224 - Go - s'm Xo ( _m KO\Eb) , (11)
B (G) 81y  32mhvE, Amh?

FIG. 2. Binding energyE, vs B for the % experiment[4], where we have expressegk=#/VmE,, so that the final result
where By=224 G anday,=174. In addition, we takey,=1.12  can be analyzed as a function of the magnetic fieldsing
X 1074 m%2/s and A=1.27ug [23]. The solid line is our theoreti- the solution to Eq(7).
cal result, while the circles and the error bars are the experimental Combining this result with Eqg7) and (9), we find that
data from Fig. 5 of Ref[4]. the average fraction of bare molecules in the closed channel
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is typically very small near the resonance. For example, for In summary, a relatively simple field-theoretic model for
®Rb parameter§21] it is no higher than Ry/N=0.07, for  Feshbach coupling has exact solutions for the eigenstates in
magnetic fields fronB, to B=160 G. This implies that the the low-density two-particle sector. It is able to accurately
structure of the dressed molecules and the underlying phy$syedict Feshbach dressed-molecule binding energies, and
IS nearr;[he rr]esogancr:]e ISI dorglnﬁted bly thle colrrelated atolso gives a physical understanding of the type of correlated
pairs rather than by the closed channel molecules. atom-molecular structure produced in these experiments. The

We can also calculate the atomic pair correlation in coor-moolel has a simple. universal character. and can be used to
dinate space. This is the inverse Fourier transfornGa€) Pie, ’

given b_Lg_(x):Goexp(—|x|/ro)/(27-rr§|x|), for x| >0. Since describe a variety c_>f cases with bqth positivg and n_egative
ro=h/\VmEg,, it is clear that, near threshold, the bound Stateé)ackground_ scattering Iength. Having anglytlc_ solutions O.f

are superpositions of molecules with pairs of atoms at ven}he actual eigenstates p_rowdes_ an altern_atlve picture that a|_ds
long range. Here, one can expect modificatipb@] of the N understanding these interesting experiments, and is readily
binding energy due to mean-field many-body interactions ofisable as a starting point to a more complete many-body
the correlated atoms, which have a character similar to Codheory.

per pairs. Such departures from the predicted binding ener- .
gies are indeed observe@1] in high-precision Ramsey The authors gratefully acknowledge the Australian Re-

spectroscopy for®®Rb. Similarly, recent collective-mode Search Council for the support of this work, and thank M.
threshold with reduced mode frequendi@6], quite different ~ research was also supported by the National Science Foun-

to that expected for a conventional molecular BEC. dation under Grant No. PHY99-07949.
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