
Coherent molecular bound states of bosons and fermions near a Feshbach resonance

P. D. Drummond and K. V. Kheruntsyan
ARC Centre of Excellence for Quantum-Atom Optics, Department of Physics, University of Queensland, Brisbane, Qld 4072, Australia

(Received 8 April 2004; published 22 September 2004)

We analyze molecular bound states of atomic quantum gases near a Feshbach resonance. A simple, renor-
malizable field theoretic model is shown to have exact solutions in the two-body sector, whose binding energy
agrees well with observed experimental results in both Bosonic and Fermionic cases. These solutions, which
interpolate between BEC and BCS theories, also provide a more general variational ansatz for resonant
superfluidity and related problems.
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The coherent transformation of a cold atomic gas to mol-
ecules in the vicinity of a photo-association[1] or Feshbach
[2] resonance has enabled a fascinating probe of quantum
dynamical behavior in coupled atom-molecular systems, to-
gether with remarkably precise measurements of quantum
binding energies. Recent Bosonic experiments have extended
the available species to133Cs, 87Rb, and23Na [3]. Experi-
ments on ultracold degenerate Fermi gases of40K and 6Li
atoms have resulted in spectacular demonstrations of mo-
lecular Bose-Einstein condensate(BEC) formation[4,5] and
of possible fermion superfluid behavior in the BEC-BCS
crossover region[6].

Since these are many-body systems, it is useful to try to
develop the simplest possible field-theoretic model that can
explain their behavior. An essential feature of any correct
many-body treatment is that the basic theory must be able to
reproduce the physics of the two-body interactions. In this
paper, we combine previous analytic solutions of a coher-
ently coupled field theory[7–9] with an exact renormaliza-
tion of the coupling constants[10], in order to obtain analytic
predictions for the two-body bound states. This gives a uni-
fied picture of any Feshbach resonance experiment and re-
lated studies[7–20], provided a small number of observable
parameters are available. The predictions will be compared
with experimental data and with coupled-channel calcula-
tions.

To quantitatively model these experiments, consider an

effective Hamiltonian for the molecular fieldsĈ0d in the

closed channel and the atomic fieldssĈ1s2dd in the free-atom
dissociation limit of the open channel:

Ĥ1 = Ĥ0 +
"

2
E d3xoi,j

UijĈi
†Ĉ j

†Ĉ jĈi , s1d

with the commutation(1) or anticommutation(2) relation

fĈisx ,td ,Ĉ j
†sx8 ,tdg±=di jdsx−x8d for Bosonic or Fermionic

field operatorsĈi, respectively. The free HamiltonianĤ0 in-
cludes the usual kinetic energy terms and the potential ener-
gies (including internal energies) due to the trap potential
"Visxd, while Uij is the atom-atom, atom-molecule, and
molecule-molecule coupling due tos-wave scattering. The
atomic and molecular masses arem1,2 andm0=m1+m2, and
Em="fV0s0d−V1s0d−V2s0dg gives the bare energy detuning

of the molecular state with respect to free atoms.
Next, we consider a coherent process of Raman photo-

association or a magnetic Feshbach resonance coupling, giv-
ing rise to an overall effective Hamiltonian term in the
homo-nuclear case(only with Bosons) [7,8],

Ĥ = Ĥ1 +
"x

2
E d3xfĈ0

†Ĉ1
2 + Ĉ1

†2Ĉ0g, s2d

or, for the case of heteronuclear dimer formation involving
either fermions or bosons[9],

Ĥ = Ĥ1 + "xE d3xfĈ0
†Ĉ1Ĉ2 + Ĉ2

†Ĉ1
†Ĉ0g. s3d

Here,x is the bare atom-molecule coupling responsible for
the conversion of free atom pairs into molecules and vice
versa. The heteronuclear case can be applied to Fermionic

atom pairs in different spin states(Ĉ1, Ĉ2) combining into a

Bosonic moleculesĈ0d, or pairs of Bosonic and Fermionic
atoms combining into a Fermionic molecule, or else to a
fully Bosonic case where the atom pairs are not identical.

Bosonic homonuclear case. First we consider the fully
Bosonic uniform case of Eq.(2), i.e., a single-species atomic
BEC (with m1;m) coupled to a molecular BEC, where the
atomic background energy is chosen to be zero. We ignore
inelastic collisions—which is a reasonable approximation at
low density, and letk=U11, wherek is the bare atom-atom
coupling due tos-wave scattering.

Here a momentum cutoff is implicitly assumed, since in
renormalizable theories one expects to obtain finite results
only after the infinities are absorbed through a redefinition of
bare couplings. To manipulate integrals thata priori are di-
vergent, we regularize them by a simple cutoff: integrals
over k are restricted touk u,K.

The homogeneous Hamiltonian, Eq.(2), has an exact
eigenstate in the simplest two-particle sector[7,8]. In mo-

mentum space, we expand the field operatorsĈ0sxd and

Ĉ1sxd in terms of Fourier componentsâskd andb̂skd, respec-
tively, with commutation relations fâskd ,â†sk8dg
=fb̂skd ,b̂†sk8dg=dsk −k8d. Including a cutoffK, the (unnor-
malized) two-particle eigenstate corresponding to the zero
center-of-mass momentum is given by[7,8]
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uCsNdl = Fâ†s0d +E
uk u=0

K d3k Gskd
s2pd3/2 b̂†skdb̂†s− kdGN/2

u0l,

s4d

where N=2 in the exactly soluble two-particle case, and
Gskd is the atomic pair-correlation function in Fourier space.
This coherent superposition of a molecule with correlated
pairs of atoms can be viewed as a “dressed” molecule. More
generally, this is also a useful low-density variational ansatz
for N.2 particles, where it describes a BEC of dressed mol-
ecules[7,8].

Fermionic or heteronuclear case. Next, we wish to con-
sider the important case of Fermionic atom pairs(with m1
=m2;m) in different spin states combining into a Bosonic
molecule. This is especially relevant to the studies of ultra-
cold Fermi gases[4–6] in the region of resonant superfluid-
ity and BEC-BCS crossover. These experiments are notable
for the greatly reduced inelastic loss rate from atom-
molecular collisions, due to Pauli blocking[22]. In this Fer-
mionic case, we only have ans-wave coupling between the
different fermions, so thatk=U12. In addition, the final re-
sults of this section can be applied to heteronuclear mol-
ecules(with either statistics of the constituent atoms), except
that the massm has to be replaced by 2mr, where mr
=m1m2/ sm1+m2d is the reduced mass.

The Hamiltonian(3) relevant to this case, also has an
exact eigenstate in the two-particle(N=2) sector [9]. Ex-

panding the field operatorsĈ1,2sxd in terms of Fourier com-

ponentsb̂1,2skd, the eigenstate is now given by

uCsNdl = Fâ†s0d +E
uk u=0

K d3k Gskd
s2pd3/2 b̂1

†skdb̂2
†s− kdGN/2

u0l.

s5d

As before, this is also a useful variational ansatz for the
N-particlesN.2d ground state, where it extends BCS theory
to include a coherent molecular field.

Exact eigenvalues. In either the homonuclear or hetero-
nuclear case, the exact energy eigenvalue corresponding to
the two-particle eigenstatesN=2d is known [8,9]. Introduc-
ing a multiplicity parameters, where s=1 for the homo-
nuclear case, ands=2 for the Fermionic or heteronuclear
case, we find that

E = Em −
"sx2

2
Fk +

2p2"r0/m

r0K − tan−1sr0KdG−1

= −
"2

mr0
2 . s6d

For real and positiver0, this corresponds to a bound state
with negative energy, and the resulting binding energy is
Eb=−E. The quantityr0 is the correlation radius or the effec-
tive size of the dressed molecule. The right-hand side of Eq.
(6) needs to be solved forr0, or equivalently for the binding
energyEb;"2/ smr0

2d as a function ofEm, but in general it
has no explicit solution.

Next, it is useful to re-express the bare Hamiltonian pa-
rameters in terms of renormalized observable parameters that
are invariant at large momentum cutoff. We therefore include
a nonperturbative renormalization using integral equation

methods from scattering theory[10], which has some subtle
features. In particular, a repulsive contact potential with
k.0 has no effect—it does not lead to scattering in three-
dimensional field theory. However, either positive or nega-
tive scattering lengths can be generated from the same type
of attractive contact potential withk,0, depending on the
limiting procedure: if it is carried out with sufficiently deep
potentials to allow a bound state to form in the atomic field
channel, then a positive scattering length is possible even
with an attractive short-range potential.

The renormalization[10] expresses the bare values ask
=Gk0, x=Gx0, andEm=E0+s"bGx0

2/2, in terms of the ob-
served or renormalized valuesk0, x0, and E0. In the Fesh-
bach resonance case, for definiteness,E0=DmsB−B0d. Here,
the cutoff K is included through a scaling parameterG=s1
−bk0d−1, whereb=mK/ s2p2"d, k0=4p"abg/m, and abg is
the backgrounds-wave scattering length for the atoms. In the
homonuclear case,Dm=2m1−mm is the magnetic moment
difference between the atomic and the bound molecular
channels, andB0 is the magnetic field corresponding to the
resonance, while in the heteronuclear case,Dm=m1+m2
−mm.

We now wish to rewrite Eq.(6) in terms of the renormal-
ized constantsx0, k0, andE0. After taking the limit of large
momentum cutoffK, we obtain the following simple analytic
result:

E0 = − Eb −
sC"x0

2ÎEb

1 − 2Ck0
ÎEb

, s7d

whereC;m3/2/ s8p"2d. Using E0=DmsB−B0d, Eq. (7) can
also be rewritten in terms of the magnetic fields, so that the
resulting binding energy can be directly compared with the
experimental data.

In the JILA 85Rb experiments[2,21], the creation of a
homonuclear dressed molecular state at a givenB value is
followed by a rapid change in the magnetic field which al-
lows an interference fringe to be observed in the remaining
total number of atoms. The reason for the fringe is due to the
fact that in a dynamical experiment, paired atoms in the
dressed molecular wave function can interfere constructively
or destructively with condensate atoms that are not in the
ground-state wave function. The resulting interference pat-
tern oscillates with a frequency corresponding to the dressed
molecular binding energy.

A graphical solution of Eq.(7), i.e., the binding energyEb
vs B for the JILA85Rb experiment[2,21], is plotted in Fig. 1,
together with experimentally observed Ramsey fringe fre-
quencies, which are interpreted in the experiment as a
dressed molecular binding energy. The agreement between
this simple analytic result and the experimentally observed
binding energy(as well as the coupled-channel calculation
[10]) is excellent.

Binding energy measurements were also carried out for
the case of Fermionic40K atoms in two different spin states
combining into a Bosonic molecule[4]. In Fig. 2 we plot the
solution to Eq.(7), i.e., the binding energyEb vs the mag-
netic fieldB, for this experiment, where we also see a good
agreement between the theory and experiment.
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Near-threshold physics. There are common features with
either Fermionic and Bosonic atoms. All results are ex-
pressed in terms of the four observable parametersx0, k0,
Dm, B0, and are clearly independent of the cutoff, as one
would expect from a renormalizable theory. There are two
cases corresponding to different signs ofk0:

(1) Attractive case. Ifabg,0, thenEb is a single-valued
function of B, so there is only one solution branch.

(2) Repulsive case. Ifabg.0, thenEb is a double-valued
function of B, so there are two solution branches. This case
has a bound state in the atomic channel.

In all cases, the physics near threshold is crucial to under-
standing either type of experiment. For small binding ener-
gies in the vicinity of the resonance, Eq.(7) gives a quadratic
dependence ofEb on E0 (or on the magnetic fieldB): Eb
.E0

2/ ssC"x0
2d2, whereE0=DmsB−B0d. This is in agreement

with the simple resonant scattering theory result thatEb
="2/masBd2 near the resonance[18,24]. Here, the effective
scattering length isasBd=abgf1−DB/ sB−B0dg, DB is the
width of the resonance, and the atom-molecule coupling

x0 can be expressed via DB as follows:
x0.Î8pabgDmDB/ ssmd.

In the opposite limit of largeEb, i.e., for magnetic fields
far away from the resonance, the same equation(7) gives
linear dependence ofEb on E0 (and hence onB) as expected,
Eb.−E0+s"x0

2/ s2k0d, including a constant energy shift.
This linear behavior is not accessible with the resonant scat-
tering theory result ofEb="2/masBd2.

For Cuk0uÎEb!1, i.e., either for small background scat-
tering uabgu or small binding energiesEb near the resonance,
we can neglect 2Ck0

ÎEb in the denominator of the second
term in Eq.(7) and obtain a quadratic with respect toÎEb.
This has the following explicit solution:

Eb . − E0 −
ssC"x0

2d2

2
FÎ1 −

4E0

ssC"x0
2d2 − 1G , s8d

which (for s=1) coincides with Eq.(21) of Ref. [17]. This
result formally incorporates the above-mentioned quadratic
dependence ofEb on E0 near the resonance where
4E0/ ssC"x0

2d2!1, and the linear dependence far away from
the resonance. The quadratic dependence is in qualitative
agreement with the behavior found from our exact result.
However, the linear partsEb.−E0d—while giving the cor-
rect slope of the binding energy—does not account for the
energy shift terms"x0

2/ s2k0d due to the renormalization of
Em. This leads to a discrepancy seen in Fig. 1(dashed line)
away from the resonance, and is due to the fact that the
assumption ofCuk0uÎEb!1 used to obtain Eq.(8) is incon-
sistent with the case of large binding energies under consid-
eration. We note here that it is also possible to obtain the
exact result from the molecular Green’s function method of
Ref. [17], if the relevant self-energy term is included without
approximation[25].

The relative fraction of the atomic and molecular compo-
nents in the two-particle eigenstate can be calculated using

the conserved total number of atomic particles,N̂=N̂1+2N̂0

(or N̂=N̂1+N̂2+2N̂0 in the Fermionic case). At low density,
the closed-channel molecular fraction is(including a factor
of 2 to reflect the fact that each molecule consists of two
atoms):

2N0/N = s1 + 2F/sd−1. s9d

Here, F;ed3kG2skd / s2pd3, and the correlation function
Gskd is given by a Lorentzian

Gskd = G0/s1 + r0
2k2d, s10d

where k= uk u, G0=smx0r0
3/ f2"sabg−r0dg, and we have al-

ready taken into account renormalization. Taking the integral
in F we obtain that

F =
G0

2

8pr0
3 =

s2m3/2x0
2

32p"ÎEb
S1 −

m3/2k0

4p"2
ÎEbD−2

, s11d

where we have expressedr0=" /ÎmEb, so that the final result
can be analyzed as a function of the magnetic fieldB using
the solution to Eq.(7).

Combining this result with Eqs.(7) and (9), we find that
the average fraction of bare molecules in the closed channel

FIG. 1. Binding energyEb vs the magnetic fieldB for the 85Rb
experiment[2]. The parameter values are taken from the subsequent
high-precision measurements on the same system[21]: B0=155 G
andabg=−443a0, wherea0 is the Bohr radius. In addition, we take
x0=2.84310−4 m3/2/s and Dm=−2.23mB [23], where mB is the
Bohr magneton. The solid line is our theoretical result, Eq.(7),
while the dashed line is the result of Eq.(8). The circles are the
experimental data of Ref.[21].

FIG. 2. Binding energyEb vs B for the 40K experiment[4],
where B0=224 G andabg=174a0. In addition, we takex0=1.12
310−4 m3/2/s andDm=1.27mB [23]. The solid line is our theoreti-
cal result, while the circles and the error bars are the experimental
data from Fig. 5 of Ref.[4].

COHERENT MOLECULAR BOUND STATES OF BOSONS… PHYSICAL REVIEW A 70, 033609(2004)

033609-3



is typically very small near the resonance. For example, for
85Rb parameters[21] it is no higher than 2N0/N.0.07, for
magnetic fields fromB0 to B.160 G. This implies that the
structure of the dressed molecules and the underlying phys-
ics near the resonance is dominated by the correlated atom
pairs rather than by the closed channel molecules.

We can also calculate the atomic pair correlation in coor-
dinate space. This is the inverse Fourier transform ofGskd
given by gsxd=G0exps−uxu / r0d / s2pr0

2uxud, for uxu.0. Since
r0=" /ÎmEb, it is clear that, near threshold, the bound states
are superpositions of molecules with pairs of atoms at very
long range. Here, one can expect modifications[18] of the
binding energy due to mean-field many-body interactions of
the correlated atoms, which have a character similar to Coo-
per pairs. Such departures from the predicted binding ener-
gies are indeed observed[21] in high-precision Ramsey
spectroscopy for85Rb. Similarly, recent collective-mode
spectroscopy in6Li has revealed BCS-like behavior near
threshold with reduced mode frequencies[26], quite different
to that expected for a conventional molecular BEC.

In summary, a relatively simple field-theoretic model for
Feshbach coupling has exact solutions for the eigenstates in
the low-density two-particle sector. It is able to accurately
predict Feshbach dressed-molecule binding energies, and
also gives a physical understanding of the type of correlated
atom-molecular structure produced in these experiments. The
model has a simple, universal character, and can be used to
describe a variety of cases with both positive and negative
background scattering length. Having analytic solutions of
the actual eigenstates provides an alternative picture that aids
in understanding these interesting experiments, and is readily
usable as a starting point to a more complete many-body
theory.
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