9,156 research outputs found
Theory of the thermoelectricity of intermetallic compounds with Ce or Yb ions
The thermoelectric properties of intermetallic compounds with Ce or Yb ions
are explained by the single-impurity Anderson model which takes into account
the crystal-field splitting of the 4{\it f} ground-state multiplet, and assumes
a strong Coulomb repulsion which restricts the number of {\it f} electrons or
{\it f} holes to for Ce and for Yb ions. Using
the non-crossing approximation and imposing the charge neutrality constraint on
the local scattering problem at each temperature and pressure, the excitation
spectrum and the transport coefficients of the model are obtained. The
thermopower calculated in such a way exhibits all the characteristic features
observed in Ce and Yb intermetallics. Calculating the effect of pressure on
various characteristic energy scales of the model, we obtain the phase
diagram which agrees with the experimental data on CeRuSi,
CeCuSi, CePdSi, and similar compounds. The evolution of the
thermopower and the electrical resistance as a function of temperature,
pressure or doping is explained in terms of the crossovers between various
fixed points of the model and the redistribution of the single-particle
spectral weight within the Fermi window.Comment: 13 pages, 11 figure
Longitudinal modes in a high-gain laser
In lasers employing high-gain narrow-linewidth transitions the theory predicts major departures of the mode-splitting frequencies from their low-gain values as well as a new type of mode splitting. The first of these effects consisting of a reduction by a factor of 2.5 of the mode splitting in a xenon 3.51-µm laser is observed experimentally
Zitterbewegung is not an observable
It has recently been claimed that Zitterbewegung has been observed. However,
we argue that it is not an observable and that the authors' observations must
be reinterpreted
Canonical quantization of electromagnetic field in an anisotropic polarizable and magnetizable medium with spatial-temporal dispersion
Modeling an anisotropic spatially and temporarily dispersive
magnetodielectric medium by two independent collections of three dimensional
vector fields, we demonstrate a fully canonical quantization of electromagnetic
field in the presence of such a medium. Two tensor fields which couple the
electromagnetic field with the medium and have an important role in this
quantization method are introduced. The electric and magnetic polarization
fields of the medium naturally are concluded in terms of the coupling tensors
and the dynamical variables modeling the magnetodielectric medium. In
Heisenberg picture, the constitutive equations of the medium together with the
Maxwell laws are obtained as the equations of motion of the total system and
the susceptibility tensors of the medium are calculated in terms of the
coupling tensors. Following a perturbation method the Green function related to
the total system is found and the time dependence of electromagnetic field
operators is derived.Comment: 19 pages, No figur
Coherent molecular bound states of bosons and fermions near a Feshbach resonance
We analyze molecular bound states of atomic quantum gases near a Feshbach
resonance. A simple, renormalizable field theoretic model is shown to have
exact solutions in the two-body sector, whose binding energy agrees well with
observed experimental results in both Bosonic and Fermionic cases. These
solutions, which interpolate between BEC and BCS theories, also provide a more
general variational ansatz for resonant superfluidity and related problems.Comment: Minor changes -- to match the final published versio
Black-Body Radiation Correction to the Polarizability of Helium
The correction to the polarizability of helium due to black-body radiation is
calculated near room temperature. A precise theoretical determination of the
black-body radiation correction to the polarizability of helium is essential
for dielectric gas thermometry and for the determination of the Boltzmann
constant. We find that the correction, for not too high temperature, is roughly
proportional to a modified hyperpolarizability (two-color hyperpolarizability),
which is different from the ordinary hyperpolarizability of helium. Our
explicit calculations provide a definite numerical result for the effect and
indicate that the effect of black-body radiation can be excluded as a limiting
factor for dielectric gas thermometry using helium or argon.Comment: 8 pages; RevTe
Flavor Neutrino Oscillations and Time-Energy Uncertainty Relation
We consider neutrino oscillations as non stationary phenomenon based on
Schrodinger evolution equation and mixed states of neutrinos with definite
flavors. We show that time-energy uncertainty relation plays a crucial role in
neutrino oscillations. We compare neutrino oscillations with
oscillations.Comment: A report at the 2nd Scandinavian Neutrino Workshop, SNOW 2006,
Stockholm, May 2-6, 200
Exact Solution of Strongly Interacting Quasi-One-Dimensional Spinor Bose Gases
We present an exact analytical solution of the fundamental system of
quasi-one-dimensional spin-1 bosons with infinite delta-repulsion. The
eigenfunctions are constructed from the wave functions of non-interacting
spinless fermions, based on Girardeau's Fermi-Bose mapping, and from the wave
functions of distinguishable spins. We show that the spinor bosons behave like
a compound of non-interacting spinless fermions and non-interacting
distinguishable spins. This duality is especially reflected in the spin
densities and the energy spectrum. We find that the momentum distribution of
the eigenstates depends on the symmetry of the spin function. Furthermore, we
discuss the splitting of the ground state multiplet in the regime of large but
finite repulsion.Comment: Revised to discuss large but finite interaction
Matter-Wave Decoherence due to a Gas Environment in an Atom Interferometer
Decoherence due to scattering from background gas particles is observed for
the first time in a Mach-Zehnder atom interferometer, and compared with
decoherence due to scattering photons. A single theory is shown to describe
decoherence due to scattering either atoms or photons. Predictions from this
theory are tested by experiments with different species of background gas, and
also by experiments with different collimation restrictions on an atom beam
interferometer.Comment: 4 pages, 3 figures, accepted to PR
- …