224 research outputs found

    Induction of steady-state glomeruloid sphere by self-assembly from human embryonic kidney cells

    Get PDF
    The glomerulus is a network of capillaries known as a tuft, located at the beginning of a nephron in the kidney. Here we describe a novel method for the induction of a macroscopically visible three-dimensional glomerulus-like sphere (GLS). This procedure did not require any additional cytokines and completed the formation of spheres within 24 h. After the formation was complete, GLS maintained a steady state for at least five days without proliferation and without a decrease in viability. Therefore, this procedure assists various assays for a prolong period of time. Overall, our protocol allows for a very simple mixing of cells from different sources to obtain fine-grained and highly dispersed GLSs. The kidney filtration barrier is a unique structure characterized by a complex three-dimensional framework of podocytes and endothelial cells. GLS exhibited the induction of many podocyte-specific gene profiles similar to those in adult human kidneys, suggesting that the sphere formation process is important for the maturation of podocytes. Focal segmental glomerulosclerosis (FSGS) is one of the major causes of steroid-resistant nephrotic syndrome, and some circulating permeability factors in the patient's serum FSGS have been implicated in the pathogenesis of the disease. Serum from patients with FSGS induced the collapse of GLS, which imitates the appearance of glomerulosclerosis in patients. In conclusion, the investigation and use of GLS may provide a novel method to elucidate the molecular mechanisms underlying complicated and unexplained events in glomeruli in a similar condition in adult kidneys

    Preventive effect of fermented brown rice and rice bran on spontaneous type 1 diabetes in NOD female mice

    Get PDF
    Consumption of brown rice and rice bran fermented with Aspergillus oryzae (FBRA) suppresses spontaneously occurring diabetes in female NOD mouse. While control diet-fed mice showed glucosuria and hyperglycemia at around 20 week of age and the ratio reached to 57% at 30 weeks of age, the ratio did not increase in the 0.5% FBRA-containing diet-fed group. The FBRA-fed group at 30 weeks of age kept higher ratio of intact islets and showed significantly lower insulitis score compared to the control diet group, with dose-dependency from 0.25% to 0.5% dietary concentration of FBRA. The percentage of diabetic mice was significantly lower at 24 weeks of age as compared to the control group (p = 0.01, log rank test). These results indicate that the suppressive effects of dietary administration of 0.5% FBRA in delaying the spontaneous onset of diabetes in NOD mice is probably achieved by maintaining the number of intact islets

    Regulation of Adrenomedullin and its Family Peptide by RAMP System – Lessons from Genetically Engineered Mice

    Get PDF
    Adrenomedullin (ADM), originally identified as a vasodilating peptide, is now recognized to be a pleiotropic molecule involved in both the pathogenesis of cardiovascular diseases and circulatory homeostasis. Homozygotes of ADM knockout mice (ADM-/-) were lethal at mid-gestation with abnormalities of vascular development and this finding clarified the angiogenic potency of ADM. Calcitonin gene-related peptide (CGRP), which has a structure and function similar to that of ADM, has been identified as a family peptide of ADM. Unlike ADM-/-, CGRP-/- were apparently normal. Therefore, the study of knockout mice first clarified the distinctly different physiological roles between ADM and CGRP. In contrast, heterozygotes of ADM knockout mice (ADM+/-) were alive but showed blood pressure elevation, reduced neovascularization, and enhanced neointimal formation by arterial injury. Based on these observations, there was hope ADM would have a therapeutic use. However, ADM has a short half-life in the blood stream and its application in chronic disease has limitations. Therefore, we focused on the ADM receptor system. The calcitonin-receptor-like receptor (CLR), which is the ADM receptor, associates with one of the accessory proteins, called receptor activity-modifying proteins (RAMPs). By interacting with RAMP1, CLR exhibits a high affinity for CGRP, whereas by interacting with either RAMP2 or -3, CLR exhibits a high affinity for ADM. We generated RAMP knockout mice and found that vascular phenotypes similar to ADM-/- were reproduced only in RAMP2-/-. This shows that RAMP2 is the key determinant of the vascular functions of ADM. RAMP2 could be an attractive therapeutic target in cardiovascular diseases.ArticleCURRENT PROTEIN & PEPTIDE SCIENCE. 14(5):347-357 (2013)journal articl

    Development of a mouse iron overload-induced liver injury model and evaluation of the beneficial effects of placenta extract on iron metabolism

    Get PDF
    Hepatic iron deposition is seen in cases of chronic hepatitis and cirrhosis, and is a hallmark of a poorer prognosis. Iron deposition is also found in non-alcoholic steatohepatitis (NASH) patients. We have now developed a mouse model of NASH with hepatic iron deposition by combining a methione- and choline-deficient (MCD) diet with an iron-overload diet. Using this model, we evaluated the effects of human placenta extract (HPE), which has been shown to ameliorate the pathology of NASH. Four-week-old male C57BL/6 mice were fed the MCD diet with 2% iron for 12 weeks. In liver sections, iron deposition was first detected around the portal vein after 1 week. From there it spread throughout the parenchyma. Biliary iron concentrations were continuously elevated throughout the entire 12-week diet. As a compensatory response, the diet caused elevation of serum hepcidin, which accelerates excretion of iron from the body. Accumulation of F4/80-positive macrophages was detected within the sinusoids from the first week onward, and real-time PCR analysis revealed elevated hepatic expression of genes related inflammation and oxidative stress. In the model mice, HPE treatment led to a marked reduction of hepatic iron deposition with a corresponding increase in biliary iron excretion. Macrophage accumulation was much reduced by HPE treatment, as was the serum oxidation-reduction potential, an index of oxidative stress. These data indicate that by suppressing inflammation, oxidative stress and iron deposition, and enhancing iron excretion, HPE effectively ameliorates iron overload-induced liver injury. HPE administration may thus be an effective strategy for treating NASH.ArticleHeliyon 5(5) : e01637-(2019)journal articl

    Placental extract suppresses cardiac hypertrophy and fibrosis in an angiotensin II-induced cachexia model in mice

    Get PDF
    Cachexia is an intractable metabolic disorder that causes extreme weight loss. It is a symptom of many chronic diseases, including cancer, liver failure, congestive heart failure and chronic kidney disease, and there is as yet no effective treatment. While the mechanisms underlying cachexia are complex, it is often accompanied by elevated angiotensin II (Ang II). Human placental extract (HPE) is a source of numerous biologically active molecules and has been used clinically to treat chronic hepatitis, liver cirrhosis and other chronic diseases. Here, we investigated the effects of HPE in an Ang II-induced cachexia model in mice. HPE treatment preserved both fat mass and lean body mass and suppressed weight loss in the cachexia model, though food intake was unaffected. Ang II infusion also caused cardiac hypertrophy and fibrosis. HPE suppressed these effects as well as Ang II-induced cardiac expression of genes related to heart failure and cardiac remodeling. HPE also reversed Ang II-induced downregulation of mitochondria-related molecules and suppressed cardiac inflammation and oxidative stress. HPE administration may thus be an effective approach to the treatment of cachexia, cardiac hypertrophy and fibrosis.ArticleHeliyon 5(10) : e02655-(2019)journal articl

    Flash Controls of Proliferation and Senescence through p21

    Get PDF
    Dysregulation of the cell proliferation has been implicated in the pathophysiology of a number of diseases. Cellular senescence limits proliferation of cancer cells, preventing tumorigenesis and restricting tissue damage. However, the role of cellular senescence in proliferative nephritis has not been determined. The proliferative peak in experimental rat nephritis coincided with a peak in E2A expression in the glomeruli. Meanwhile, E12 (an E2A-encoded transcription factor) did not promote proliferation of Mesangial cells (MCs) by itself. We identified caspase-8-binding protein FLICE-associated huge protein (FLASH) as a novel E2A-binding partner by using a yeast two-hybrid screening. Knockdown of FLASH suppressed proliferation of MCs. This inhibitory effect was partially reversed by the knockdown of E2A. In addition, the knockdown of FLASH induced cyclin-dependent kinase inhibitor p21WAF1/CIP1 (p21) expression, but did not affect p53 expression. Furthermore, overexpression of E12 and E47 induced p21, but not p53 in MCs, in the absence of FLASH. We also demonstrated that E2A and p21 expression at the peak of proliferation was followed by significant induction of FLASH in mesangial areas in rat proliferative glomerulonephritis. Moreover, we revealed that FLASH negatively regulates cellular senescence via the interaction with E12. We also demonstrated that FLASH is involved in the TNF-α-induced p21 expressions. These results suggest that the functional interaction of E2A and FLASH play an important role in cell proliferation and cellular senescence via regulation of p21 expression in experimental glomerulonephritis

    Role of Elf3 in diabetic nephropathy

    Get PDF
    Diabetic nephropathy (DN) is among the most serious complications of diabetes mellitus, and often leads to end-stage renal disease ultimately requiring dialysis or renal transplantation. The loss of podocytes has been reported to have a role in the onset and progression of DN. Here, we addressed the activation mechanism of Smad3 signaling in podocytes. Expression of RII and activation of Smad3 were induced by AGE exposure (P<0.05). Reduction of the activation of RII-Smad3 signaling ameliorated podocyte injuries in Smad3-knockout diabetic mice. The bone morphogenetic protein 4 (BMP4) significantly regulated activation of RII-Smad3 signalings (P<0.05). Moreover, the epithelium-specific transcription factor, Elf3was induced by AGE stimulation and, subsequently, upregulated RII expression in cultured podocytes. Induction of Elf3 and activation of RII-Smad3 signaling, leading to a decrease in WT1 expression, were observed in podocytes in diabetic human kidneys. Moreover, AGE treatment induced the secretion of Elf3-containing exosomes from cultured podocytes, which was dependent on the activation of the TGF-β-Smad3 signaling pathway. In addition, exosomal Elf3 protein in urine could be measured only in urinary exosomes from patients with DN. The appearance of urinary exosomal Elf3 protein in patients with DN suggested the existence of irreversible injuries in podocytes. The rate of decline in the estimated Glomerular Filtration Rate (eGFR) after measurement of urinary exosomal Elf3 protein levels in patients with DN (R2 = 0.7259) might be useful as an early non-invasive marker for podocyte injuries in DN

    Tertiary Lymphoid Tissues Are Microenvironments with Intensive Interactions between Immune Cells and Proinflammatory Parenchymal Cells in Aged Kidneys

    Get PDF
    三次リンパ組織による腎障害メカニズムの解明: 慢性腎臓病の新たな治療標的候補を同定. 京都大学プレスリリース. 2023-08-08.[Significance Statement] Ectopic lymphoid structures called tertiary lymphoid tissues (TLTs) develop in several kidney diseases and are associated with poor renal prognosis. However, the mechanisms underlying TLT expansion and their effect on renal regeneration remain unclear. The authors report that single-nucleus RNA sequencing and validation experiments demonstrate that TLTs potentially amplify inflammation in aged injured kidneys. Lymphocytes within TLTs promote proinflammatory phenotypes of the surrounding proximal tubules and fibroblasts within the TLTs via proinflammatory cytokine production. These proinflammatory parenchymal cells then interact with immune cells by chemokine or cytokine production. Such cell-cell interactions potentially increase inflammation, expand TLTs, and exacerbate kidney injury. These findings help illuminate renal TLT pathology and suggest potential therapeutic targets. [Background] Ectopic lymphoid structures called tertiary lymphoid tissues (TLTs) develop in several kidney diseases and are associated with poor renal prognosis. However, the mechanisms that expand TLTs and underlie exacerbation of kidney injury remain unclear. [Methods] We performed single-nucleus RNA sequencing (snRNA-seq) on aged mouse kidneys with TLTs after ischemia-reperfusion injury. The results were validated using immunostaining, in situ hybridization of murine and human kidneys, and in vitro experiments. [Results] Using snRNA-seq, we identified proinflammatory and profibrotic Vcam1⁺ injured proximal tubules (PTs) with NFκB and IFN-inducible transcription factor activation. VCAM1⁺ PTs were preferentially localized around TLTs and drove inflammation and fibrosis via the production of multiple chemokines or cytokines. Lymphocytes within TLTs expressed Tnf and Ifng at high levels, which synergistically upregulated VCAM1 and chemokine expression in cultured PT cells. In addition, snRNA-seq also identified proinflammatory and profibrotic fibroblasts, which resided within and outside TLTs, respectively. Proinflammatory fibroblasts exhibited STAT1 activation and various chemokine or cytokine production, including CXCL9/CXCL10 and B cell–activating factor, contributing to lymphocyte recruitment and survival. IFNγ upregulated the expression of these molecules in cultured fibroblasts in a STAT1-dependent manner, indicating potential bidirectional interactions between IFNγ-producing CXCR3⁺ T cells and proinflammatory fibroblasts within TLTs. The cellular and molecular components described in this study were confirmed in human kidneys with TLTs. [Conclusions] These findings suggest that TLTs potentially amplify inflammation by providing a microenvironment that allows intense interactions between renal parenchymal and immune cells. These interactions may serve as novel therapeutic targets in kidney diseases involving TLT formation

    High Levels of Copper, Zinc, Iron and Magnesium, but not Calcium, in the Cerebrospinal Fluid of Patients with Fahr's Disease

    Get PDF
    Patients with marked calcification of the basal ganglia and cerebellum have traditionally been referred to as having Fahr's disease, but the nomenclature has been criticized for including heterogeneous etiology. We describe 3 patients with idiopathic bilateral striatopallidodentate calcinosis (IBSPDC). The patients were a 24-year-old man with mental deterioration, a 57-year-old man with parkinsonism and dementia, and a 76-year-old woman with dementia and mild parkinsonism. The former 2 patients showed severe calcification of the basal ganglia and cerebellum, and the latter patient showed severe calcification of the cerebellum. We found significantly increased levels of copper (Cu), zinc (Zn), iron (Fe) and magnesium (Mg), using inductively coupled plasma mass spectrometry in the CSF of all these 3 patients. The increased levels of Cu, Zn, Fe and Mg reflect the involvement of metabolism of several metals and/or metal-binding proteins during the progression of IBSPDC. More numerous patients with IBSPDC should be examined in other races to clarify the common mechanism of the disease and to investigate the specific treatment
    corecore