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A B S T R A C T   

Consumption of brown rice and rice bran fermented with Aspergillus oryzae (FBRA) suppresses spontaneously 
occurring diabetes in female NOD mouse. While control diet-fed mice showed glucosuria and hyperglycemia at 
around 20 week of age and the ratio reached to 57% at 30 weeks of age, the ratio did not increase in the 0.5% 
FBRA-containing diet-fed group. The FBRA-fed group at 30 weeks of age kept higher ratio of intact islets and 
showed significantly lower insulitis score compared to the control diet group, with dose-dependency from 0.25% 
to 0.5% dietary concentration of FBRA. The percentage of diabetic mice was significantly lower at 24 weeks of 
age as compared to the control group (p = 0.01, log rank test). These results indicate that the suppressive effects 
of dietary administration of 0.5% FBRA in delaying the spontaneous onset of diabetes in NOD mice is probably 
achieved by maintaining the number of intact islets.   

1. Introduction 

Type 1 diabetes is an autoimmune disease caused by immune cell 
targeting of pancreatic islets. Th1-mediating T cell populations have an 
important role in the onset of insulitis and destruction of islet β cells 
(Kahaly & Hansen, 2016; Paschou, Paradoupoulou-Marketou, Chrousos, 
& Kanaka-Gantenbein, 2018). Immune cell crosstalk in type 1 diabetes 
and released cytokines IFNγ, IL-1β, and TNFα also induce the production 
of reactive oxygen species (ROS) by β cells, and ROS have the potential 
to mediate apoptosis (Lehuen, Diana, Zaccone, & Cooke, 2010). Proin
flammatory cytokine-mediated free radical generation in the pancreatic 
islets of rats has been reported (Tabatabaie, Vasquez-Weldon, Moore, & 
Kotake, 2003). Chronic pancreatic inflammation induces death of islet β 
cells and depletes insulin secretion, resulting in onset of diabetes. While 
pancreas-specific autoimmune responses can damage islet β cells, the 
mammalian pancreas possesses a regeneration potential to maintain its 
important function in blood glucose control. Regeneration of β cells has 
been reported in adult rodents with partial pancreatectomy, tissue 
injury and insulin resistance (Cano et al., 2008; Nir, Melton, & Dor, 
2007; Tokoro, Tezel, Nagasaka, Kaneko, & Nakao, 2003; Yi, Park, & 
Melton, 2013). Pancreatic and duodenal homeobox 1 (Pdx1) and related 

molecules, forkhead box O1 (Foxo1), regenerating islet-derived 2 
(Reg2), programmed cell death 4 (Pdcd4), are involved in islet functions 
and the fate of injured islet cells. Pdx1 and Foxo1 have an important role 
in pancreatic development and β cell functional regulation (Inagaki, 
Tajiri, Tate, Kunimura, & Morohashi, 2012; Liu et al., 2007; Meng et al., 
2009). Regeneration gene families are expressed during the process of 
whole islet neogenesis and β cell regeneration in the pancreas, and a 
positive correlation between Reg2 expression and a reduction of insulitis 
has been reported (Hill et al., 2013; Huszarik et al., 2010). Pdcd4, up- 
regulated during apoptosis, is a tumor suppressor gene and a potential 
target for anticancer therapies (Lankat-Buttgereit & Gőke, 2009). It was 
suggested that Pdcd4 may have a role in differentiation and disease, 
such as diabetes and inflammation. Its deficiency in diabetic model mice 
has been reported to confer resistance to diabetes (Ruan et al., 2011). 

Non-obese diabetic (NOD) mice develop spontaneous autoimmune 
diabetes that shares many features with human type 1 diabetes (Gag
nerault, Luan, Lotton, & Lepault, 2002). They demonstrated that 
pancreatic lymph nodes are required for the priming of autoreactive T 
cells in NOD mice around 3 week of age. The first signs of nondestructive 
insulitis appeared at 3–4 weeks of age, and a disequilibrium between 
regulatory and effector T cells occurred at around 12 weeks of age, 
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resulting in β cell destruction and diabetes onset. Cyclophosphamide 
treatment has been known to disturb the immune system and promote 
the onset of type 1 diabetes in NOD mice. However, a spontaneous onset 
model in NOD female mice is often used to examine the effects of food 
components or probiotics (Babu, Liu, & Gilbert, 2013; Mishra et al., 
2019). 

In addition to genetic and immunologic factors, environmental fac
tors such as infection, diet, and microbiota can also contribute to the 
pathogenesis of type 1 diabetes (Mishra et al., 2019; Paschou et al., 
2018). Certain food components and antioxidants have been reported to 
show anti-diabetic effects in model mice and in cultured cells (Babu 
et al., 2013; Kaneto et al., 1999). Such polyphenols have worked 
through improved viability or decreased apoptosis of β cells in the 
pancreas (Babu et al., 2013; Zhang & Liu, 2011; Zhang, Zhen, Maechler, 
& Liu, 2013). 

Brown rice and rice bran fermented by Aspergillus oryzae (FBRA) is a 
processed food that is rich in partially digested fiber, rice bran-derived 
phytic acid, and plant polyphenols. Its anti-inflammatory effects have 
been reported in several animal disease models (Kataoka et al., 2008; 
Onuma et al., 2015; Phutthaphadoong et al., 2010). Here, we show the 
suppressive effects of dietary administration of FBRA against sponta
neous onset of type1 diabetes in NOD female mice. We also examined its 
effect on the expression of Pdx1 and related molecules, which are known 
to effect islet cell, viability, death, and regeneration. 

2. Materials and methods 

2.1. Food material examined in this study 

FBRA was provided by Genmai Koso Co. Ltd. Composition of FBRA 
analyzed by Japan Food Research Laboratories (Tokyo, Japan) was 
shown in Supplementary Table 1. During fermentation of brown rice and 
rice bran with Aspergillus oryzae, increase of polyamines, phenolic 
acids, and ergothioneine have been demonstrated by LC/ESI-MS/MS 
(Horie et al., 2019, 2020; Ogawa et al., 2017). 

2.2. Animal experiments 

NOD/ShiJcl (female, 4-week-old mice) and NOD/ShiJic-scid Jcl 
(female, 4-week-old mice) were purchased from CLEA Japan, Inc. 
(Tokyo, Japan). Mice were housed in plastic cages in a room environ
mentally controlled at a temperature of 23 ◦C ± 2 ◦C and a 12-h light/12- 
h dark cycle, and they were adapted to laboratory conditions with free 
access to a basal diet (MF, Oriental Yeast Co., Ltd., Tokyo, Japan). All 
experiments were in accordance with guidelines of the Tokushima 
University Ethics Committee for the care and use of laboratory animals 
(approval No. 13046). 

After a 1-week acclimation, mice were divided into a non-treated 
group and a FBRA-treated group. Mice in the FBRA-fed group were 
fed a 0.25− 5% (w/w) FBRA-containing basal diet throughout the 
experimental period. We selected the dietary concentration based on our 
preliminary result and other animal research using 5% FBRA-containing 
diet without harmful effect. Body weight was recorded once a week. 
Glucosuria was weekly monitored with test paper (Terumo Co., Ltd., 
Tokyo, Japan). Onset of diabetes was confirmed in glucosuria-positive 
mice by measuring glucose levels in the blood from the tail vein with 
Glucose PILOT (Iwai Chemicals Co. Ltd., Tokyo, Japan). Mice showing 
250 mg/dL or higher blood glucose were diagnosed as diabetic as 
described by Lian et al. (2012). At the end of the experimental periods, 
mice were euthanized and the pancreas was resected and HE-stained to 
compare insulitis levels among the groups. Spleen and pancreatic lymph 
node were used for flow cytometric analysis of lymphocyte populations, 
if necessary. 

To better understand the inhibitory mechanisms of dietary FBRA in 
type 1 diabetes, adoptive transfer experiment were done using a splenic 
T cell fraction from donor NOD mice. Donor NOD mice and recipient 

NOD-scid mice were fed with an MF control diet or 0.5% FBRA-diet from 
5 to 19 weeks of age. Splenocytes were collected from 5 mice in each 
donor group, pooled, and the CD19+ B cell fraction was removed with 
anti-mouse CD19 antibody and BioMag® goat anti rat IgG beads (QIA
GEN). The prepared T cell fraction (>95% 7AAD-B220- cells) was 
transferred intraperitoneally into age-matched NOD-scid mice (1 × 107 

cells/0.2 mL PBS/mouse) (Supplemental Fig. 1). A T cell fraction from 
donor NOD mice maintained with control diet was transferred to NOD- 
scid mice fed with control diet (NOD → SCID) or to NOD-scid mice fed 
with 0.5% FBRA-diet (NOD → SCID + FBRA). A T cell fraction from 
donor NOD mice maintained with 0.5% FBRA diet was transferred to 
NOD-scid mice fed with control diet (NOD + FBRA → SCID). The recip
ient mice were maintained with the same diet as before the cell transfer 
for 4 weeks. At the end of experiment, mice were euthanized and the 
pancreas was resected and HE-stained to compare insulitis levels among 
the groups. 

2.3. Histological analysis of insulitis 

Resected pancreases were immediately fixed in 4% 
paraformaldehyde-phosphate buffer for at least 24 h, and sequentially 
dehydrated in 70%, 80%, 90%, 95% ethanol, and xylene, and then 
embedded with paraffin. From the paraffin block, 3 sections per each 
sample were rehydrated and HE- stained to observe pancreatic islets. 
The insulitis level of NOD mice was assessed based on the level of 
lymphocyte infiltration. The islets were graded scores 0, 1, 2, 3 or 4 as 
described by Serreze et al. (1998), and the insulitis score of each mouse 
was calculated as follows: accumulated score of observed islets/number 
of observed islets. Mice with glucosuria, which had already become 
diabetic, were euthanized before the end of the experimental period and 
they were graded as score 5. 

2.4. Flow cytometry 

Lymphocytes were obtained from the spleen and pancreatic lymph 
nodes. They were stained with fluorochrome-conjugated antibodies to 
CD4, CD8, B220 (eBioscience). To stain intracellular IFNγ, isolated cells 
were stimulated with 250 ng/mL PMA (Sigma-Aldrich) and 1 

μg/mL ionomycin (Sigma-Aldrich) for 5 h in the presence of mon
ensin. 7-aminoactinomycin D (7AAD) (Sigma-Aldrich) was used to 
exclude dead cells. Stained cells were analyzed with a FACS Canto II (BD 
Bioscience) and data were analyzed using FlowJo software (Tree Star). 

2.5. Expression of Pdx1 and related molecules 

To investigate how FBRA inhibited the spontaneous onset of dia
betes, pancreases were removed at 19 or 22 weeks of age from NOD mice 
that had been fed either 0.5% FBRA-containing food or a control-diet. A 
part of the pancreas was immediately preserved in RNAlater for RNA 
preparation according to the manufacturer’s instruction, and the 
remaining part was sectioned as described above and used for immuno- 
histochemical analysis of the expression of Pdx1, insulin II or Pdcd4. 
Pancreatic sections were incubated with anti-PDX1 antibody (1:2000; 
ab47267), anti-insulin antibody (1:2000; ab63820), anti-PDCD4 anti
body (1:1000; HPA001032) with biotinylated anti-rabbit IgG as the 
secondary antibody, using a Histofine SAB-PO(R) kit (NICHIREI 
BIOSCIENCE INC.). 

Pancreatic RNA was extracted with RNeasy Mini kit, its quality was 
confirmed with the presence of ribosomal RNA bands in denatured 
agarose gel electrophoresis, and was reverse-transcribed to cDNA using 
a Prime Script™ RT reagent kit (TaKaRa). First-strand cDNA synthesis 
was followed by PCR to detect the expression of Pdx1, Foxo1, Reg2, Ins2 
(insulin II), Pdcd4, and glyceraldehyde-3-phosphate dehydrogenase 
(Gapdh). The sequences of the PCR primers are shown in supplemental 
Table 1. The reaction products were separated on 1.5% agarose gel and 
stained with ethidium bromide. Levels of mRNA of Pdx1, Foxo1, and 
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Pdcd4 were further quantified by real time PCR (SYBR® Premix Ex 
Taq™ II) and analyzed by the ΔΔCt method using Gapdh as a reference 
gene. The sequences of the real time PCR primers are shown in sup
plemental Table 2. Conditions for RT-PCR and RT-qPCR were as 
described previously (Abe et al, 2012; Klelnert et al, 2016; Chen et al., 

2016; Yoshimura et al., 2013). 

2.6. Statistical analysis 

Comparisons were performed using the Mann-Whitney’s U test 

(d)

Fig. 1. Effects of FBRA feeding on the spontaneous onset of diabetes and insulitis in NOD female mice. (a) Appearance of glucosuria in NOD mice fed with a control- 
diet, or a diet containing 0.5% or 5% FBRA. Diabetic mice were detected with test paper and confirmed with higher blood glucose levels. (b) Representative insulitis 
in HE-stained pancreatic section of NOD mice fed control diet or 0.5% FBRA-containing diet (HE stain, ×50). At the age of 30 weeks, pancreases were resected from 
all of the remaining mice and the paraffin- embedded sections were HE-stained for analysis of insulitis. Small intact islets often observed in 0.5% FBRA-fed mice are 
shown with white arrows. (c) Number of islets with scores 0–4 in individual mice. Insulitis was evaluated by the extent of lymphocyte infiltration as observed with 
HE-stained sections. Mice that were diagnosed as diabetic before the end of the experimental period were assigned a score of 5. (d) Insulitis score and percentage of 
intact islets in NOD mice fed with control diet or FBRA-containing diet at 12 weeks of age (n = 3) or 30 weeks of age (n = 7). Asterisk means a statistical difference 
between the two groups (Mann-Whitney’s U test, P < 0.05). 
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between two groups or the Kruskal-Walis test in multiple groups. Dif
ferences in onset rates of diabetes between control diet and FBRA- 
containing diet group were analyzed by the Kaplan-Meier log-rank 
test. A p value < 0.05 was considered to be statistically significant. 

3. Results 

3.1. Suppressive effect of dietary FBRA in spontaneously occurring 
diabetes in NOD mice 

A spontaneously occurring diabetes model in NOD female mice was 
used to examine the effects of dietary FBRA. Body weight diagrams are 
shown in supplementary Fig. 2. The onset of diabetes was determined by 
assessing glucosuria and confirmed by measuring blood glucose levels. 
The first diabetic mice in the control diet group appeared at an age of 
20 weeks and the ratio reached to 57% at 30 weeks of age (Fig. 1a). In 
the 0.5% FBRA-fed group, the spontaneous onset of diabetes started at 
23 weeks of age, but the ratio of diabetic mice did not increase. Since 
insulitis has been known to occur in the pancreas prior to diabetes onset, 
we compared the levels of insulitis using HE-stained pancreatic tissue 
sections. Fig. 1b shows representative insulitis in mice maintained on 
the control diet or 0.5% FBRA at the end of the experiment. While 

lymphocyte-infiltrated pancreatic islets were observed in both panels, 
small intact islets were frequently found in the pancreatic tissues of 0.5% 
FBRA-fed mice. The insulitis score was still low at an age of 12 weeks, 
but at 30 weeks of age, the ratio of intact islets decreased to 10% of total 
examined islets in the control diet-fed mouse (Fig. 1c, d). However, the 
0.5% FBRA-containing diet-fed group had a significantly higher ratio of 
intact islets and showed significantly lower insulitis scores compared to 
the control diet group at 30 weeks of age (Mann-Whitney test, p < 0.05). 
5% FBRA-feeding showed no significant effect on either the appearance 
time of glucosuria or the severity of insulitis. 

The optimal concentration of FBRA in the diet was determined by 
comparing the insulitis scores obtained at 16 weeks of age among the 
0%, 0.25%, 0.5%, and 1% FBRA-fed groups (n = 3) (Fig. 2a). The 
average insulitis score decreased in a dose-dependent manner and was 
lowest at 0.5% FBRA, but increased at 1% addition. The ratio of intact 
islets (%) was also highest at 0.5% dietary concentration. The delayed 
onset of diabetes in the 0.5% FBRA-fed group was confirmed with an 
increased number of mice (n = 15) (Fig. 2b). At 24 weeks of age, the 
percentage of diabetic mice was significantly lower in the 0.5% FBRA- 
fed group as compared to the control diet-fed group (p = 0.01, log 
rank test). These results indicate that dietary administration of FBRA 
could suppress the spontaneous onset of type 1 diabetes in NOD female 
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mice, with 0.5% addition being the optimal concentration. 
T lymphocyte populations were collected from spleens and pancre

atic lymph nodes of NOD mice at 12 weeks of age (Fig. 1c, d) and 
analyzed by flow cytometry. No significant difference in the percentages 
and numbers of CD4+ and CD4+IFNg+ T cells was observed between 
control diet-fed and 0.5% FBRA-fed mice at that time (n = 3, Supple
mental Fig. 3). 

3.2. Effect of dietary FBRA on insulitis in adoptive transfer experiment 

We next examined whether or not dietary FBRA inhibited a step in 
the activation of islet-targeting T lymphocytes. T cell fractions from 
NOD mice (NOD) that were fed with/without 0.5% FBRA were prepared 
and transferred into NOD scid mice (SCID) fed with/without 0.5% FBRA. 
Four weeks after the adoptive transfer, insulitis levels in recipient mice 
were assessed. Compared to the control diet-fed group (NOD → SCID), 
0.5% FBRA-feeding to donor mice (NOD + FBRA → SCID) tended to in
crease the mean insulitis score and the percentage of islets with a score 
of 3 or 4 (Fig. 3, Table 1), while the difference was not significant 
probably due to small number of mice and large interindividual varia
tion (Kruskal-Walis test, p = 0.099 for both insulitis score and the per
centage of islets with a score of 3 or 4). On the other hand, recipient mice 
fed with 0.5% FBRA (NOD → SCID + FBRA) retained more intact islets 
and the mean insulitis scores tended to be lower. 

These results suggest that FBRA might maintain intact islets in the 
pancreas, rather than inhibiting islet-specific T lymphocyte activation. 

3.3. Effects of FBRA on the expression of Pdx1 and related molecules 

In 0.5%FBRA-fed mice, small but intact islets were frequently 
observed in pancreatic tissue sections and the number of intact islets 
were increased but severely infiltrated islets did not decrease. Then, we 
examined the influence of FBRA on the expression of Pdx1 and related 
molecules that were involved in the function, proliferation/regeneration 
and survival of islet β cells. Whole pancreases were removed from 19- 
and 22- week-old NOD female mice that has been fed either a control 
diet (n = 5) or a 0.5% FBRA-diet (n = 5). They were used to compare the 
expression of Pdx1, Foxo1, Reg2, and Pdcd4. RT-PCR and RT-qPCR 
showed similar mRNA levels (Fig. 4a, b), suggesting similar levels of 
gene expression. Immuno-histochemical analysis (Fig. 4c) showed 
similar levels of insulin, Pdcd4 and Pdx1 in pancreatic sections. 

However, the distribution of Pdx1 tended to be greater in the nuclei in 
the 0.5% FBRA-fed group compared to the control diet- fed group. 

4. Discussion 

FBRA contains anti-oxidative components such as phytic acid and 
plant polyphenols, and it has shown anti-inflammatory effects in some 
animal disease models (Kataoka et al., 2008; Onuma et al., 2015; 
Phutthaphadoong et al., 2010). Here, we examined its suppressive ef
fects on autoimmune-mediated diabetes by using spontaneously occur
ring diabetes and insulitis in NOD female mice. 

Dietary administration of 0.5% FBRA significantly delayed the 
appearance of diabetes in mice, and significantly lowered the level of 
insulitis (Figs. 1 and 2). Lymphocyte infiltration into pancreatic islets 
was observed at the age of 12 weeks. However, the 0.5% FBRA-fed group 
frequently had small intact islets and showed a significantly higher ratio 
of intact islets, resulting in significantly lower insulitis score at 30 weeks 
of age compared to the control diet-fed group. In adoptive transfer ex
periments (Fig. 3, Table 1), the number and ratio of intact islets also 
tended to increase only when recipient mice were fed with the 0.5% 
FBRA- diet. Recipient mice who received a T cell fraction from 0.5% 
FBRA-fed NOD mice, could not maintain the ratio of intact islets and 
rather increased the ratio of severely damaged islets. Possible targets of 
dietary FBRA in this type 1 diabetes model include: (1) islet-specific T 
lymphocyte activation; (2) islet-targeting lymphocyte infiltration; (3) 
cytokine-mediated inflammation or ROS production; (4) regeneration of 
damaged islets or apoptotic cell death of damaged islets. In 
autoimmune-mediated insulitis, IFNγ released from activated T cells has 
an important role as a trigger of inflammation and β-cell dysfunction 
(Kahaly & Hansen, 2016; Mishra et al., 2019; Pondugala, Sasikala, 
Guduru, Rebala, & Nageshwar, 2015). However, the percentage and 
number of CD4+ and CD4+ IFNγ+ T cells in the spleens and pancreatic 
lymph nodes at 12 weeks of age were not significantly different between 
control diet-fed and 0.5% FBRA-fed mice (n = 3, Supplemental Fig. 1). 
This is consistent with the above results in adoptive transfer experi
ments. These results suggest that FBRA or its components have a sup
pressive effect on type 1 diabetes at 0.5% dietary concentration through 
maintaining a sufficient number of intact islets in NOD mice. 

The suppressive effect of FBRA on type 1 diabetes was observed at 
lower concentrations, but not at higher doses (1% and 5%). FBRA is 
processed from brown rice and rice bran by fermenting with Aspergillus 
oryzae, during which polyphenols increase (Tanaka et al., 2017). 
Various polyphenols possess beneficial effects on diabetes in vivo and in 
vitro through enhanced β cell viability and proliferation (Babu et al., 
2013). These actions may explain the suppressive activity of FBRA. On 
the other hand, we previously reported that 5% dietary FBRA could 
increase resident Lactobacillus species in mouse intestine (Kataoka et al., 
2007). Some Lactobacillus species have been shown to mitigate type 1 
diabetes through a decrease of proinflammatory cytokine production, 
oxidative stress, or changes in the intestinal environment (Matsuzaki 

Fig. 3. Effects of 0.5% FBRA feeding on insulitis in NOD SCID female mice after 
adoptive transfer of a splenic T cell fraction. A total T cell fraction from donor 
NOD mice maintained with or without 0.5% FBRA treatment was transferred to 
NOD SCID mice with or without 0.5% FBRA. Four weeks after the adoptive 
transfer, insulitis level was evaluated on HE-stained sections. The number of 
islets with scores 0–4 in individual recipient mice is shown. 

Table 1 
Effects of 0.5% FBRA feeding on insulitis in NOD scid female mice after adoptive 
transfer of a splenic T cell fraction.   

NOD → SCID NOD → SCID +
FBRA 

NOD +
FBRA → SCID 

Insulitis score 2.2 ± 1.3 1.85 ± 0.48 3.5 ± 0.5 
Intact islets (%) 19.8 ± 32.9 34.8 ± 15.3 2.2 ± 3.8 
Islets with score 3 or 4 

(%) 
46.6 ± 32.5 39.7 ± 14.5 87.0 ± 14.5 

A T cell fraction from donor NOD mice (NOD) with or without 0.5% FBRA 
treatment was transferred to NOD scid mice (SCID) with or without 0.5% FBRA. 
Four weeks after the adoptive transfer, insulitis level was assessed based on the 
level of lymphocyte infiltration observed in HE-stained sections. The insulitis 
score was calculated as described in Materials and Methods. Values are mean ±
SD. 

K. Kataoka et al.                                                                                                                                                                                                                                



Journal of Functional Foods 78 (2021) 104356

6

et al., 1997; Valladares et al., 2010; Yadav et al., 2018). But, activation 
of Th1 immunity by Lactobacillus species has also been reported (Cas
tanheira et al., 2007; Segawa et al., 2008; Wen et al., 2014). FBRA 
administration at higher concentrations might enhance Th1 immunity 
and reverse its beneficial effects on spontaneously occurring diabetes in 
NOD mice. 

In adult rodents, the pancreas has regenerative potential for auto
immune- or other factor-mediated damage to of islet β cells (Tokoro 
et al., 2003; Cano et al., 2008; Nir et al., 2007; Yi et al., 2013). Pdx1 and 
related molecules Foxo1, Reg2, Pdcd4 have important roles in islet 
function and the fate of injured islet cells (Hill et al., 2013; Huszarik 
et al., 2010; Inagaki et al., 2012; Liu et al., 2007; Meng et al., 2009; Ruan 
et al., 2011). Pdx1 and Foxo1 are involved in pancreatic development 
and β cell functional regulation through changes in their intracellular 
translocation (Meng et al., 2009). The inflammatory cytokine IFNγ is 
shown to decrease nuclear localization of Pdx1 and trigger β cell 
dysfunction (Pondugala et al., 2015). On the other hand, polyphenolic 
compounds in food have recently been reported to have anti-diabetic 
actions via various mechanisms, including increased expression of 
pdx1 or restoration of nuclear localization of Pdx1 (Babu et al., 2013; 
Pondugala et al., 2015; Zhang et al., 2013). In our study, mRNA levels of 
Pdx1 and related genes were similar in whole pancreases in 19- and 22- 
week-old mice in the control diet-fed group and the 0.5% FBRA-fed 
group. However, immuno-histochemical analyses of pancreatic sec
tions showed a tendency for more Pdx1 in the cell nuclei in the 0.5% 
FBRA-fed group. Intracellular localization of Pdx1/Foxo1 and their 
phosphorylation level should be further examined at appropriate ages in 

NOD mice with/without 0.5% FBRA treatment. 
In this study, we demonstrated a suppressive effect of FBRA on the 

spontaneous onset of type 1 diabetes in NOD mice. FBRA is processed 
food and no harmful phenomenon has been observed in healthy adults 
(Nemoto et al., 2011). For clinical application of FBRA, ameliorating 
effects after onset of type 1 diabetes should be examined, and suppres
sive mechanisms of FBRA including determination of active ingredients 
and its optimal dose should be clarified in future studies. 
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