18 research outputs found

    Protein Calorie Malnutrition, Nutritional Intervention and Personalized Cancer Care

    Full text link
    Cancer patients often experience weight loss caused by protein calorie malnutrition (PCM) during the course of the disease or treatment. PCM is expressed as severe if the patient has two or more of the following characteristics: obvious significant muscle wasting, loss of subcutaneous fat; nutritional intake of \u3c50% of recommended intake for 2 weeks or more; bedridden or otherwise significantly reduced functional capacity; weight loss of \u3e2% in 1 week, 5% in 1 month, or 7.5% in 3 months. Cancer anorexiacachexia syndrome (CACS) is a multifactorial condition of advanced PCM associated with underlying illness (in this case cancer) and is characterized by loss of muscle with or without loss of fat mass. Cachexia is defined as weight loss of more than 5% of body weight in 12 months or less in the presence of chronic disease. Hence with a chronic illness on board even a small amount of weight loss can open the door to cachexia. These nutritional challenges can lead to severe morbidity and mortality in cancer patients. In the clinic, the application of personalized medicine and the ability to withstand the toxic effects of anti-cancer therapies can be optimized when the patient is in nutritional homeostasis and is free of anorexia and cachexia. Routine assessment of nutritional status and appropriate intervention are essential components of the effort to alleviate effects of malnutrition on quality of life and survival of patients

    2-Methyl-pyran-4-one-3-O-β-D-glucopyranoside isolated from leaves of Punica granatum inhibits the TNFα-induced cell adhesion molecules expression by blocking nuclear transcription factor-κB (NF-κB)

    No full text
    Here, we report bioactivity-guided isolation, purification and characterization of a novel compound, 2-methyl-pyran-4-one-3-O-β-D-glucopyranoside (MPG) from the leaves of Punica granatum. The structure of MPG was established on the basis of its detailed spectral analyses. We demonstrated that MPG not only inhibited the expression of cell adhesion molecules but also significantly blocked its functional consequence, that is, the adhesion of neutrophils on human endothelial cells monolayer. To elucidate the molecular mechanism of action of MPG, we showed that MPG decreased the transcript levels of ICAM-1, VCAM-1 and E-selectin genes. Using electrophoretic mobility shift assay (EMSA) and western blot analyses, we demonstrated that MPG significantly blocked both the TNFα-induced translocation and activation of nuclear transcription factor-κB (NF-κB). Thus, MPG could be useful as a novel lead molecule for developing future anti-inflammatory agents

    Ethyl gallate isolated from Pistacia integerrima Linn. inhibits cell adhesion molecules by blocking AP-1 transcription factor

    No full text
    Ethnopharmacological relevance: Galls from Pistacia integerrima Linn. (kakadshringhi) have been used as therapeutic agent for various inflammatory diseases in Indian system of traditional medicine. However, the active constituents underlying the medicinal properties of the Pistacia integerrima Linn. have not been thoroughly investigated yet. Aim of the study: Deregulated expression of cell adhesion molecules (CAMs) on vascular endothelium aggravates the inflammatory condition in various chronic diseases. In this work, we aimed to identify the active constituent from leaf gall of Pistacia integerrima Linn. using CAMs expression assay in activity guided purification, followed by determining the molecular mechanism of action. Material and methods: Cell based ELISA for LPS induced CAMs expression in human vein endothelial cells (HUVECs) was used for the activity guided isolation form Pistacia galls followed by structural determination of active constituent using IR, MS and NMR spectroscopy. Mechanism of action of the active constituent was investigated by western blot, RT-PCR and EMSA experiments. Results: In our study, ethyl gallate (EG) was identified as the active constituent of Pistacia integerrima Linn. for mediating its anti-inflammatory activity. It significantly attenuated LPS induced ICAM-1 and VCAM-1 at the protein and mRNA levels. At a functional level, it inhibited the adhesion of neutrophils to LPS activated endothelium. To identify its mechanism of action, we demonstrated that EG inhibited LPS induced cell adhesion molecules expression by blocking AP-1 transcription factor without affecting nuclear transcription factor-κB (NF-κB). Conclusion: Our results suggest that EG could be useful as a lead molecule for developing therapeutic agent for various inflammatory diseases

    Inhibitory effect of β-diketones and their metal complexes on TNF-α induced expression of ICAM-1 on human endothelial cells

    No full text
    Recent reports show that the natural β-diketone curcumin displays important biological properties regarding the intercellular adhesion molecule-1 (ICAM-1), which plays a critical role in the immune responses and inflammation. In this study the ICAM-1 inhibitory activity of β-diketone compounds, which are curcumin models lacking aromatic peripheral hydroxyl and methoxy groups, along with some metal derivatives is investigated. β-Diketones are systematically more active than metal complexes and the best obtained inhibition is 75% for both groups. The best inhibitors are 4-benzoyl-3-methyl-1-phenyl-pyrazol-5-one (HQ<SUP>Ph</SUP>) among the ligands, and sodium benzoylacetonato among metal derivatives. These results appear in line with the reported antitumor activity of related species. Since 4-acyl-5-pyrazolones posses four tautomeric forms, those corresponding to HQ<SUP>Ph</SUP> were investigated using density functional theory. Docking of all HQ<SUP>Ph</SUP> tautomers on ICAM-1 protein was performed suggesting one keto-enol form favored to act in biological environment

    Design, synthesis and anti-inflammatory evaluation of PEGylated 4-methyl and 4, 8-dimethylcoumarins

    No full text
    Aberrant interaction between the leukocyte and the endothelial cell (EC) resulting from the deregulated expression of cell adhesion molecules (CAMs) on the endothelium results in uncontrolled inflammation leading to various inflammatory disorders. The existing drugs used to modulate the cytokine-induced expression of cell molecules have severe side effects. Therefore, there is an unmet therapeutic need to develop potent and safe drugs to treat inflammatory disorders. In the present study, novel PEGylated and non-PEGylated 4-methyl and 4,8-dimethylcoumarin derivatives were designed, synthesized and, evaluated for ICAM-1 inhibitory activity. The PEGylated coumarins were synthesized in two different ways. In the first approach, diesters of 4-methyl and 4,8-dimethylcoumarin were co-polymerized, separately with poly(ethylene glycol) using Candida antarctica lipase under solventless conditions. In the other approach, 4-methyl and 4,8-dimethylcoumarins were suitably converted to their bromo analogues and were tethered to already synthesized PEGylated polymers. Synthesized derivatives were evaluated for anti-inflammatory activities with respect to their ability to inhibit the TNF-α induced ICAM-1 (intercellular cell adhesion molecule-1) on human endothelial cells. It was found that PEGylated 4-methyl and 4,8-dimethylcoumarin derivatives were more effective than their non-PEGylated analogues to inhibit ICAM-1 expression. The present study opens new vista for PEGylated non-steroidal anti-inflammatory compounds and their further investigations

    Regulation of NF-κB Activation through a Novel PI-3K-Independent and PKA/Akt-Dependent Pathway in Human Umbilical Vein Endothelial Cells

    Get PDF
    <div><p>The transcription factor NF-κB regulates numerous inflammatory diseases, and proteins involved in the NF-κB-activating signaling pathway are important therapeutic targets. In human umbilical vein endothelial cells (HUVECs), TNF-α-induced IκBα degradation and p65/RelA phosphorylation regulate NF-κB activation. These are mediated by IKKs (IκB kinases) viz. IKKα, β and γ which receive activating signals from upstream kinases such as Akt. Akt is known to be positively regulated by PI-3K (phosphoinositide-3-kinase) and differentially regulated via Protein kinase A (PKA) in various cell types. However, the involvement of PKA/Akt cross talk in regulating NF-κB in HUVECs has not been explored yet. Here, we examined the involvement of PKA/Akt cross-talk in HUVECs using a novel compound, 2-methyl-pyran-4-one-3-O-β-D-2′,3′,4′,6′-tetra-O-acetyl glucopyranoside (MPTAG). We observed that MPTAG does not directly inhibit IKK-β but prevents TNF-α-induced activation of IKK-β by blocking its association with Akt and thereby inhibits NF-κB activation. Interestingly, our results also revealed that inhibitory effect of MPTAG on Akt and NF-κB activation was unaffected by wortmannin, and was completely abolished by H-89 treatment in these cells. Thus, MPTAG-mediated inhibition of TNF-α-induced Akt activation was independent of PI-3K and dependent on PKA. Most importantly, MPTAG restores the otherwise repressed activity of PKA and inhibits the TNF-α-induced Akt phosphorylation at both Thr308 and Ser473 residues. Thus, we demonstrate for the first time the involvement of PKA/Akt cross talk in NF-κB activation in HUVECs. Also, MPTAG could be useful as a lead molecule for developing potent therapeutic molecules for diseases where NF-κB activation plays a key role.</p> </div

    MPTAG restores PKA activity in TNFα-stimulated HUVECs.

    No full text
    <p>(A) The cells were treated with media (control), MPTAG, SQ 22536, H-89 or their indicated combinations in absence and presence of TNF-α stimulation. PKA activity was assessed in the cell lysates. <a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0046528#s2" target="_blank">Results</a> are expressed as mean ± sem of three independent experiments. *p<0.05 vs. control. <b>Proposed model of MPTAG action in TNF-α-stimulated HUVECs.</b> (B) In TNF-α-stimulated HUVECs (without MPTAG treatment), PI-3K-regulated Akt is activated (indicated by solid line arrow) resulting in NF-κB activation. On the other hand, PKA activity remained repressed (indicated by broken line arrow) under these conditions. (C) MPTAG pretreatment to TNF-α-stimulated HUVECs restored the repressed activity of PKA. Thus, derepression of PKA activity resulted in inhibition of Akt and overall inhibition of NF-κB in these cells.</p

    MPTAG inhibits the TNF-α-induced Akt activation and its association with IKK-β.

    No full text
    <p>(A) The cells were induced with TNF-α (10 ng/ml) for the indicated times. The total cell extracts were prepared and subjected to western blot analysis using anti-phosphoAkt, for both Ser473 and Thr308 residues, and anti-Akt antibodies. (B) The cells were treated with MPTAG (400 µM) and induced with TNF-α for 30 mins followed by western blot analysis as stated above. (C) The intensity of bands were densitometrically scanned and normalized with total Akt levels. The values presented are mean ± SEM. *p<0.05 vs. uninduced cells; **p<0.05 vs. TNF-α-induced cells, statistical significance was set at p<0.05. (D) The cells were induced with TNF-α (10 ng/ml) for the indicated times. The total cell extracts were prepared and immunoprecipitated with anti-IKK-β antibody followed by western blot analysis with anti-Akt and anti-IKK-β antibodies. (E) The cells were pretreated with MPTAG at varying concentrations and induced with TNF-α for 30 mins. The total cell extracts were prepared and processed as stated above and analyzed for western blot as stated above. (F) The intensity of bands were densitometrically scanned and normalized with IKK-β levels. (G) The cells were pretreated with 400 µM MPTAG and then stimulated with 10 ng/ml TNF-α for the indicated times. The total cell extracts were prepared, immunoprecipitated with anti-IKK-β antibody and analyzed by western blot using anti-Akt and anti-IKK-β antibodies. (H) <b>Effect of MPTAG on TNF-α-induced p38 MAPK and ERK1/2 activation.</b> The cells were treated with MPTAG and induced with TNF-α as stated above. The total cell extracts were prepared and analyzed by western blot using anti-phosphospecific p38 MAPK and ERK1/2 antibodies. The same membrane was reblotted with anti-p38 MAPK, ERK 1/2 and β-actin antibodies. The values presented are mean ± SEM. *p<0.05 vs. uninduced cells; **p<0.05 vs. TNF-α-induced cells, statistical significance was set at p<0.05.</p

    MPTAG prevents the TNF-α-induced NF-κB transcription and activation in human endothelial cells.

    No full text
    <p>(A) The cells were pretreated with or without 400 µM of MPG before induction with TNF-α (10 ng/ml) for 4 h. The total RNA of the cells was isolated and analysed by RT-PCR. The intensity of transcripts was normalized with that of β-Actin levels expressed under similar conditions. (B) The cells were pretreated with MPTAG at varying concentrations and then induced with TNF-α. The cytoplasmic (CE) and nuclear (NE) extracts were prepared from untreated and MPTAG-treated TNF-α-stimulated cells (see “<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0046528#s4" target="_blank">Methods</a>”). The nuclear extracts were analyzed for NF-κB activation by EMSA. (C) The nuclear extracts from unstimulated or TNF-α-stimulated HUVECs were incubated with the indicated antibodies and analyzed for NF-κB activation by EMSA (see “<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0046528#s4" target="_blank">Methods</a>”). (D) The cells were transiently transfected by electroporation with a NF-κB-containing luciferase reporter gene followed by treatment with 400 µM MPTAG and TNF-α stimulation. The supernatants after cell lysis were assayed for luciferase activity. The mean value for cells treated with no MPTAG and no TNF-α was set to 1, and -fold differences were determined by comparing values against this set value. *p<0.005 vs. uninduced cells; **p<0.01 vs. TNF-α-induced cells, statistical difference was set at p<0.05.</p
    corecore