2,436 research outputs found

    Dust in Hot Plasma of Nearby Dusty Elliptical Galaxies Observed with the Spitzer Space Telescope

    Get PDF
    We report on mid- and far-IR Spitzer observations of 7 nearby dusty elliptical galaxies by using the Multiband Imaging Photometer (MIPS) and Infrared Spectrograph (IRS). Our sample galaxies are known to contain an excessive amount of interstellar dust against sputtering destruction in hot plasma filling the interstellar space of elliptical galaxies. In order to study the origin and the properties of the excess dust in the hot plasma, we selected galaxies with a wide range of X-ray luminosities but similar optical luminos ities for our Spitzer Guest Observers (GO1) program. The 7 galaxies are detected at the MIPS 24 um, 70 um, and 160 um bands; the far- to mid-IR flux ratios of relatively X-ray-bright elliptical galaxies are lower than those of X-ray-faint galaxies. From the IRS spectra, polycyclic aromatic hydrocarbon (PAH) emission features are detected significantly from 5 of the 7 galaxies; t he emission intensities are weaker as the X-ray luminosity of the galaxy is larger. We have found a correlation between the far- to mid-IR flux ratio and the equivalent width of the PAH emission feature. We have obtained apparent spatial correspondence between mid-IR and X-ray distributions in the outer regions for the three X-ray-brightest galaxies in our sample. Possible interpretations for our observational results are discussed.Comment: 25 pages, 7 figures, accepted for publication in Publications of the Astronomical Society of Japa

    Low-Resolution Spectrum of the Diffuse Galactic Light and 3.3 um PAH emission with AKARI InfraRed Camera

    Full text link
    We first obtained the spectrum of the diffuse Galactic light (DGL) at general interstellar space in 1.8-5.3 um wavelength region with the low-resolution prism spectroscopy mode of the AKARI Infra-Red Camera (IRC) NIR channel. The 3.3 um PAH band is detected in the DGL spectrum at Galactic latitude |b| < 15 deg, and its correlations with the Galactic dust and gas are confirmed. The correlation between the 3.3 um PAH band and the thermal emission from the Galactic dust is expressed not by a simple linear correlation but by a relation with extinction. Using this correlation, the spectral shape of DGL at optically thin region (5 deg < |b| < 15 deg) was derived as a template spectrum. Assuming that the spectral shape of this template spectrum is uniform at any position, DGL spectrum can be estimated by scaling this template spectrum using the correlation between the 3.3 um PAH band and the thermal emission from the Galactic dust.Comment: 7 pages, 5 figures, accepted by Publications of the Astronomical Society of Japan (PASJ

    Search for the Infrared Emission Features from Deuterated Interstellar Polycyclic Aromatic Hydrocarbons

    Full text link
    We report the results of a search for emission features from interstellar deuterated polycyclic aromatic hydrocarbons (PAHs) in the 4um region with the Infrared Camera (IRC) onboard AKARI. No significant excess emission is seen in 4.3-4.7um in the spectra toward the Orion Bar and M17 after the subtraction of line emission from the ionized gas. A small excess of emission remains at around 4.4 and 4.65um, but the ratio of their intensity to that of the band emission from PAHs at 3.3-3.5um is estimated as 2-3%. This is an order of magnitude smaller than the values previously reported and also those predicted by the model of deuterium depletion onto PAHs. Since the subtraction of the ionized gas emission introduces an uncertainty, the deuterated PAH features are also searched for in the reflection nebula GN 18.14.0, which does not show emission lines from ionized gas. We obtain a similar result that excess emission in the 4um region, if present, is about 2% of the PAH band emission in the 3um region. The present study does not find evidence for the presence of the large amount of deuterated PAHs that the depletion model predicts. The results are discussed in the context of deuterium depletion in the interstellar medium.Comment: 24 pages, 6 figures, to appear in Ap

    Theoretical study of deuteronated PAHs as carriers for IR emission features in the ISM

    Full text link
    This work proposes deuteronated PAH (DPAH+ ) molecules as a potential carrier of the 4.4 and 4.65 {\mu}m mid infrared emission bands that have been observationally detected towards the Orion and M17 regions. Density Functional Theory calculations have been carried out on DPAH+ molecules to see the variations in the spectral behaviour from that of a pure PAH. DPAH+ molecules show features that arise due to the stretching of the aliphatic C-D bond. Deuterated PAHs have been previously reported as carriers for such features. However, preferred conditions of ionization of PAHs in the interstellar medium (ISM) indicates the possibility of the formation of DPAH+ molecules. Comparison of band positions of DPAH+ s shows reasonable agreement with the observations. We report the effect of size of the DPAH+ molecules on band positions and intensities. This study also reports a D/H ratio ([D/H]sc ; the ratio of C-D stretch and C-H stretch bands per [D/H]num ) that is decreasing with the increasing size of DPAH+ s. It is noted that large DPAH+ molecules (no. of C atoms ~ 50) match the D/H ratio that has been estimated from observations. This ratio offers prospects to study the deuterium abundance and depletion in the ISM

    Characterization and Improvement of the Image Quality of the Data Taken with the Infrared Camera (IRC) Mid-Infrared Channels onboard AKARI

    Full text link
    Mid-infrared images frequently suffer artifacts and extended point spread functions (PSFs). We investigate the characteristics of the artifacts and the PSFs in images obtained with the Infrared Camera (IRC) onboard AKARI at four mid-infrared bands of the S7 (7{\mu}m), S11 (11{\mu}m), L15 (15{\mu}m), and L24 (24 {\mu}m). Removal of the artifacts significantly improves the reliability of the ref- erence data for flat-fielding at the L15 and L24 bands. A set of models of the IRC PSFs is also constructed from on-orbit data. These PSFs have extended components that come from diffraction and scattering within the detector arrays. We estimate the aperture correction factors for point sources and the surface brightness correction factors for diffuse sources. We conclude that the surface brightness correction factors range from 0.95 to 0.8, taking account of the extended component of the PSFs. To correct for the extended PSF effects for the study of faint structures, we also develop an image reconstruction method, which consists of the deconvolution with the PSF and the convolution with an appropriate Gaussian. The appropriate removal of the artifacts, improved flat-fielding, and image reconstruction with the extended PSFs enable us to investigate de- tailed structures of extended sources in IRC mid-infrared images.Comment: 35 pages, 15 figures, accepted for publication in PAS

    Should prophylactic thrombolysis be routine in clinical practice? Evidence from an autopsy case of septicemia

    Get PDF
    BACKGROUND: Central venous catheters provide easy access for intravenous infusion and nutrition, but they can bring about complications such as catheter-related infections. Infected central venous catheters often cause nosocomial bloodstream infections with high morbidity and mortality. However, most of the morphological data that have been published are derived from in vitro and in vivo studies and few reports of direct evidence obtained from patient-derived samples have been described. Here we present visual evidence of catheter-related candidemia. To our knowledge, this is the first reported conventional histopathological evidence of a Candida-infected intraluminal thrombus in a patient’s central venous catheter. CASE PRESENTATION: A 62-year-old Japanese female with obstructive jaundice, gastrointestinal bleeding, and liver metastasis from pancreatic head cancer was given an implantable subcutaneous central venous port for nutrition and chemotherapy administration. High fever ensued on day 16 after the central venous port insertion and blood cultures revealed Candida albicans. Although the patient was given 300 mg/day of fosfluconazole according to the suggestion of the infection control team, she died from respiratory failure. Postmortem computed tomography revealed findings consistent with acute respiratory distress syndrome, suggesting that the patient’s course was complicated by catheter-related sepsis. Autopsy revealed a subcutaneous abscess around the port, from which C. albicans was cultured. However, no catheter-adherent thrombus, thrombosis of the great central veins, or endocardial vegetations were detected in the patient. Histological analysis revealed scattered abscesses in several organs including lungs and kidneys. Hyaline membrane formation and Candida colonies were found in the lungs. The central venous port tube, together with the part of the subclavian vein into which it had been inserted, was involved in an intraluminal fibrin thrombus containing neutrophils and macrophages, indicating that the thrombus existed while the patient was alive. Histopathological examination following use of the periodic acid-Schiff reagent and the Grocott stain revealed scattered Candida in the thrombus. CONCLUSIONS: Prophylactic thrombolysis should be encouraged to prevent central venous catheter-related candidiasis in clinical practice

    AKARI Near Infrared Spectroscopy: Detection of H2O and CO2 Ices toward Young Stellar Objects in the Large Magellanic Cloud

    Full text link
    We present the first results of AKARI Infrared Camera near-infrared spec- troscopic survey of the Large Magellanic Cloud (LMC). We detected absorption features of the H2O ice 3.05 um and the CO2 ice 4.27 um stretching mode toward seven massive young stellar objects (YSOs). These samples are for the first time spectroscopically confirmed to be YSOs. We used a curve-of-growth method to evaluate the column densities of the ices and derived the CO2/H2O ratio to be 0.45 pm 0.17. This is clearly higher than that seen in Galactic massive YSOs (0.17 pm 0.03). We suggest that the strong ultraviolet radiation field and/or the high dust temperature in the LMC may be responsible for the observed high CO2 ice abundance.Comment: 11 pages, 1 table, 2 figure
    corecore