13 research outputs found

    Cyclic AMP Responsive Element Binding Proteins Are Involved in ‘Emergency’ Granulopoiesis through the Upregulation of CCAAT/Enhancer Binding Protein β

    Get PDF
    In contrast to the definitive role of the transcription factor, CCAAT/Enhancer binding protein α (C/EBPα), in steady-state granulopoiesis, previous findings have suggested that granulopoiesis during emergency situations, such as infection, is dependent on C/EBPβ. In this study, a novel lentivirus-based reporter system was developed to elucidate the molecular switch required for C/EBPβ-dependency. The results demonstrated that two cyclic AMP responsive elements (CREs) in the proximal promoter region of C/EBPβ were involved in the positive regulation of C/EBPβ transcription during granulocyte-macrophage colony-stimulating factor (GM-CSF)–induced differentiation of bone marrow cells. In addition, the transcripts of CRE binding (CREB) family proteins were readily detected in hematopoietic stem/progenitor cells. CREB was upregulated, phosphorylated and bound to the CREs in response to GM-CSF stimulation. Retroviral transduction of a dominant negative CREB mutant reduced C/EBPβ mRNA levels and significantly impaired the proliferation/differentiation of granulocyte precursors, while a constitutively active form of CREB facilitated C/EBPβ transcription. These data suggest that CREB proteins are involved in the regulation of granulopoiesis via C/EBPβ upregulation

    Novel Targeted Therapy for Precursor B-Cell Acute Lymphoblastic Leukemia: Anti-CD22 Antibody-MXD3 Antisense Oligonucleotide Conjugate

    No full text
    Abstract The exponential rise in molecular and genomic data has generated a vast array of therapeutic targets. Oligonucleotide-based technologies to down regulate these molecular targets have promising therapeutic efficacy. However, there is relatively limited success in translating this into effective in vivo cancer therapeutics. The primary challenge is the lack of effective cancer cell-targeted delivery methods, particularly for a systemic disease such as leukemia. We developed a novel leukemiatargeting compound composed of a monoclonal antibody directly conjugated to an antisense oligonucleotide (ASO). Our compound uses an ASO that specifically targets the transcription factor MYC-associated factor X (MAX) dimerization protein 3 (MXD3), which was previously identified to be critical for precursor B-cell (preB) acute lymphoblastic leukemia (ALL) cell survival. The MXD3 ASO was conjugated to an anti-cluster of differentiation-22 (CD22) antibody (αCD22 Ab) that specifically targets most preB ALL. We demonstrated that the αCD22 Ab-ASO conjugate treatment showed MXD3 protein knockdown and leukemia cell apoptosis in vitro. We also demonstrated that the conjugate treatment showed cytotoxicity in normal B cells, but not in other hematopoietic cells, including hematopoietic stem cells. Furthermore, the conjugate treatment at the lowest dose tested (0.2 mg/kg Ab for 6 doses — twice a week for 3 wks) more than doubled the mouse survival time in both Reh (median survival time 20.5 versus 42.5 d, p < 0.001) and primary preB ALL (median survival time 29.3 versus 63 d, p < 0.001) xenograft models. Our conjugate that uses αCD22 Ab to target the novel molecule MXD3, which is highly expressed in preB ALL cells, appears to be a promising novel therapeutic approach

    A distinct subpopulation of leukemia initiating cells in acute precursor B lymphoblastic leukemia: quiescent phenotype and unique transcriptomic profile.

    No full text
    In leukemia, a distinct subpopulation of cancer-initiating cells called leukemia stem cells (LSCs) is believed to drive population expansion and tumor growth. Failing to eliminate LSCs may result in disease relapse regardless of the amount of non-LSCs destroyed. The first step in targeting and eliminating LSCs is to identify and characterize them. Acute precursor B lymphoblastic leukemia (B-ALL) cells derived from patients were incubated with fluorescent glucose analog 2-(N-(7-Nitrobenz-2-oxa-1, 3-diazol-4-yl) Amino)-2-Deoxyglucose (NBDG) and sorted based on NBDG uptake. Cell subpopulations defined by glucose uptake were then serially transplanted into mice and evaluated for leukemia initiating capacity. Gene expression profiles of these cells were characterized using RNA-Sequencing (RNA-Seq). A distinct population of NBDG-low cells was identified in patient B-ALL samples. These cells are a small population (1.92% of the entire leukemia population), have lower HLA expression, and are smaller in size (4.0 to 7.0 μm) than the rest of the leukemia population. All mice transplanted with NBDG-low cells developed leukemia between 5 and 14 weeks, while those transplanted with NBDG-high cells did not develop leukemia (p ≤ 0.0001-0.002). Serial transplantation of the NBDG-low mouse model resulted in successful leukemia development. NBDG-medium (NBDG-med) populations also developed leukemia. Interestingly, comprehensive molecular characterization of NBDG-low and NBDG-med cells from patient-derived xenograft (PDX) models using RNA-Seq revealed a distinct profile of 2,162 differentially-expressed transcripts (DETs) (p&lt;0.05) with 70.6% down-regulated in NBDG-low cells. Hierarchical clustering of DETs showed distinct segregation of NBDG-low from NBDG-med and NBDG-high groups with marked transcription expression alterations in the NBDG-low group consistent with cancer survival. In conclusion, A unique subpopulation of cells with low glucose uptake (NBDG-low) in B-ALL was discovered. These cells, despite their quiescence characteristics, once transplanted in mice, showed potent leukemia initiating capacity. Although NBDG-med cells also initiated leukemia, gene expression profiling revealed a distinct signature that clearly distinguishes NBDG-low cells from NBDG-med and the rest of the leukemia populations. These results suggest that NBDG-low cells may represent quiescent LSCs. These cells can be activated in the appropriate environment in vivo, showing leukemia initiating capacity. Our study provides insight into the biologic mechanisms of B-ALL initiation and survival

    Lentivirus-based reporter system.

    No full text
    <p>A. Expression of C/EBPβ mRNA in c-kit<sup>+</sup> bone marrow cells with or without GM-CSF stimulation <i>in vivo</i>. *:<i>P</i><0.05, n = 3. Data are representative of two independent experiments. B. Schematic illustration of the lentivirus vector for reporter assays. SIN, self-inactivated long terminal repeat; PGK prom, phosphoglycerate kinase promoter; Ars I, sea urchin arylsulfatase insulator sequence. C. Elongation factor-1 (EF-1) promoter activity in bone marrow cells revealed by the lentivirus-based reporter system. Bone marrow cells were analyzed by flow cytometry after two days incubation with GM-CSF following viral infection. Shaded histogram, promoter-less control; open histogram, EF-1 promoter.</p

    Involvement of CREB-C/EBPβ pathway in candidemia-induced “emergency granulopoiesis.”

    No full text
    <p>A. Expression of C/EBPβ mRNA in c-kit<sup>+</sup> bone marrow cells with or without candidemia. *:<i>P</i><0.05, n = 3. B. Western blotting analysis of c-kit+ bone marrow cells with or without candidemia. C. Chromatin immunoprecipitation of CREB using c-kit+ bone marrow cells during candidemia induced emergency granulopoiesis. Data are representative of two independent experiments.</p

    Flow cytometric analysis of the C/EBPβ proximal promoter region using the lentivirus-based reporter system.

    No full text
    <p>A. Schematic illustration of the lentivirus vector. SIN, self-inactivated long terminal repeat; PGK prom, phosphoglycerate kinase promoter; Ars I, sea urchin arylsulfatase insulator sequence. B and C. Bone marrow cells were transduced with the lentivirus vector containing the indicated fragment and were analyzed for Thy1.1 and d2EGFP expression after 48 hours stimulation with GM-CSF. D and E. Effects of the mutated CREs at −110 and −65 bp on the activity of the promoter fragment (−243 to +16 bp). Shaded histogram, promoter-less control; open histogram, promoter fragment. Wt, wild type; mut, mutated. *:<i>P</i><0.05, **:<i>P<0.01</i> (n = 3). Data are representative of three independent experiments.</p
    corecore