6 research outputs found

    Original Article Fish Oil Regulates Adiponectin Secretion by a Peroxisome Proliferator-Activated Receptor-␥-Dependent Mechanism in Mice

    Get PDF
    Adiponectin has insulin-sensitizing, antiatherogenic, and anti-inflammatory properties, but little is known about factors that regulate its secretion. To examine the effect of fish oil on adiponectin secretion, mice were fed either a control diet or isocaloric diets containing 27% safflower oil or 27, 13.5, and 8% menhaden fish oil. Within 15 days, fish oil feeding raised plasma adiponectin concentrations twoto threefold in a dose-dependent manner, and the concentrations remained approximately twofold higher for 7 days when the fish oil diet was replaced by the safflower oil diet. Within 24 h, fish oil markedly induced transcription of the adiponectin gene in epididymal adipose tissue but not in subcutaneous fat. The increase of plasma adiponectin by fish oil was completely blocked by administration of the peroxisome proliferator-activated receptor (PPAR)␥ inhibitor bisphenol-A-diglycidyl ether. In contrast, there was no effect of fish oil feeding on adiponectin secretion in PPAR␣-null mice. These data suggest that fish oil is a naturally occurring potent regulator of adiponectin secretion in vivo and that it does so through a PPAR␥-dependent and PPAR␣-independent manner in epididymal fat. Diabetes 55: 924 -928, 200

    Reduced mitochondrial density and increased IRS-1 serine phosphorylation in muscle of insulin-resistant offspring of type 2 diabetic parents

    No full text
    To further explore the nature of the mitochondrial dysfunction and insulin resistance that occur in the muscle of young, lean, normoglycemic, insulin-resistant offspring of parents with type 2 diabetes (IR offspring), we measured mitochondrial content by electron microscopy and insulin signaling in muscle biopsy samples obtained from these individuals before and during a hyperinsulinemic-euglycemic clamp. The rate of insulin-stimulated muscle glucose uptake was approximately 60% lower in the IR offspring than the control subjects and was associated with an approximately 60% increase in the intramyocellular lipid content as assessed by (1)H magnetic resonance spectroscopy. Muscle mitochondrial density was 38% lower in the IR offspring. These changes were associated with a 50% increase in IRS-1 Ser312 and IRS-1 Ser636 phosphorylation and an approximately 60% reduction in insulin-stimulated Akt activation in the IR offspring. These data provide new insights into the earliest defects that may be responsible for the development of type 2 diabetes and support the hypothesis that reductions in mitochondrial content result in decreased mitochondrial function, which predisposes IR offspring to intramyocellular lipid accumulation, which in turn activates a serine kinase cascade that leads to defects in insulin signaling and action in muscle

    DIP2A Functions as a FSTL1 Receptor*

    No full text
    FSTL1 is an extracellular glycoprotein whose functional significance in physiological and pathological processes is incompletely understood. Recently, we have shown that FSTL1 acts as a muscle-derived secreted factor that is up-regulated by Akt activation and ischemic stress and that FSTL1 exerts favorable actions on the heart and vasculature. Here, we sought to identify the receptor that mediates the cellular actions of FSTL1. We identified DIP2A as a novel FSTL1-binding partner from the membrane fraction of endothelial cells. Co-immunoprecipitation assays revealed a direct physical interaction between FSTL1 and DIP2A. DIP2A was present on the cell surface of endothelial cells, and knockdown of DIP2A by small interfering RNA reduced the binding of FSTL1 to cells. In cultured endothelial cells, knockdown of DIP2A by small interfering RNA diminished FSTL1-stimulated survival, migration, and differentiation into network structures and inhibited FSTL1-induced Akt phosphorylation. In cultured cardiac myocytes, ablation of DIP2A reduced the protective actions of FSTL1 on hypoxia/reoxygenation-induced apoptosis and suppressed FSTL1-induced Akt phosphorylation. These data indicate that DIP2A functions as a novel receptor that mediates the cardiovascular protective effects of FSTL1

    Adiponectin Deficiency, Diastolic Dysfunction, and Diastolic Heart Failure

    No full text
    Aldosterone infusion results in left ventricular hypertrophy (LVH) and hypertension and may involve profibrotic and proinflammatory mechanisms. In turn, hypertension is the major cause of diastolic heart failure (HF). Adiponectin, an adipose-derived plasma protein, exerts antiinflammatory and anti-hypertrophic effects and is implicated in the development of hypertension and systolic HF. We thus tested the hypothesis that hypoadiponectinemia in aldosterone-induced hypertension exacerbated cardiac remodeling and diastolic HF. Wild-type (WT) or adiponectin-deficient (APNKO) mice underwent saline or aldosterone infusion and uninephrectomy and were fed 1% salt water for 4 wk. Blood pressure was increased in aldosterone-infused WT (132 ± 2 vs. 109 ± 3 mm Hg; P < 0.01) and further augmented in APNKO mice (140 ± 3 mm Hg; P < 0.05 vs. aldosterone-infused WT). LVH was increased in aldosterone-infused WT vs. WT mice (LV/body weight ratio, 4.8 ± 0.2 vs. 4.1 ± 0.2 mg/g) and further increased in aldosterone-infused APNKO mice (LV/body weight ratio, 6.0 ± 0.4 mg/g). Left ventricular ejection fraction was not decreased in either aldosterone-infused WT or APNKO hearts. Pulmonary congestion however was worse in APNKO mice (P < 0.01). The ratio of early ventricular filling over late ventricular filling (E/A) and the ratio of mitral peak velocity of early filling to early diastolic mitral annular velocity (E/e’), measures of diastolic function, were increased in aldosterone-infused WT hearts and further increased in APNKO hearts (P < 0.05 for both). Renal function and cardiac fibrosis were no different between both aldosterone-infused groups. Aldosterone increased matrix metalloproteinase-2 expression in WT hearts (P < 0.05 vs. WT and P < 0.01 vs. APNKO). Myocardial atrial natriuretic peptide, interferon-γ, and TNF-α expression were increased in aldosterone-infused WT hearts. Expression of these proteins was further increased in aldosterone-infused APNKO hearts. Therefore, hypoadiponectinemia in hypertension-induced diastolic HF exacerbates LVH, diastolic dysfunction, and diastolic HF. Whether or not adiponectin replacement prevents the progression to diastolic HF will warrant further study
    corecore