76 research outputs found
Lower plasma levels of selenium and glutathione in smear-positive tuberculosis patients in Malawi
No Abstract
Coulomb Drag in the Extreme Quantum Limit
Coulomb drag resulting from interlayer electron-electron scattering in double
layer 2D electron systems at high magnetic field has been measured. Within the
lowest Landau level the observed drag resistance exceeds its zero magnetic
value by factors of typically 1000. At half-filling of the lowest Landau level
in each layer (nu = 1/2) the data suggest that our bilayer systems are much
more strongly correlated than recent theoretical models based on perturbatively
coupled composite fermion metals.Comment: 4 pages, 4 figure
Coulomb drag as a signature of the paired quantum Hall state
Motivated by the recent Coulomb drag experiment of M. P. Lilly et. al, we
study the Coulomb drag in a two-layer system with Landau level filling factor
. We find that the drag conductivity in the incompressible paired
quantum Hall state at zero temperature can be finite. The drag conductivity is
also greatly enhanced above , at which the transition between the weakly
coupled compressible liquids and the paired quantum Hall liquid takes place. We
discuss the implications of our results for the recent experiment.Comment: 4 pages, 1 figure included, replaced by the published versio
Quasiparticles in the 111 state and its compressible ancestors
We investigate the relationship of the spontaneously inter-layer coherent
``111''state of quantum Hall bilayers at total filling factor \nu=1 to
``mutual'' composite fermions, in which vortices in one layer are bound to
electrons in the other. Pairing of the mutual composite fermions leads to the
low-energy properties of the 111 state, as we explicitly demonstrate using
field-theoretic techniques. Interpreting this relationship as a mechanism for
inter-layer coherence leads naturally to two candidate states with
non-quantized Hall conductance: the mutual composite Fermi liquid, and an
inter-layer coherent charge e Wigner crystal. The experimental behavior of the
interlayer tunneling conductance and resistivity tensors are discussed for
these states.Comment: 4 Pages, RevTe
The effective action of (2+1)-dimensional QED: the effect of finite fermion density
The effective action of (2+1)-dimensional QED with finite fermion density is
calculated in a uniform electromagnetic field. It is shown that the integer
quantum Hall effect and de Haas-van Alphen like phenomena in condensed matter
physics are derived directly from the effective action.Comment: 10 pages, Revtex, No figure
Nondissipative Drag Conductance as a Topological Quantum Number
We show in this paper that the boundary condition averaged nondissipative
drag conductance of two coupled mesoscopic rings with no tunneling, evaluated
in a particular many-particle eigenstate, is a topological invariant
characterized by a Chern integer. Physical implications of this observation are
discussed.Comment: 4 pages, no figure. Title modified and significant revision made to
the text. Final version appeared in PR
Effective action of a 2+1 dimensional system of nonrelativistic fermions in the presence of a uniform magnetic field: dissipation effects
The effective action of nonrelativistic fermions in 2+1 dimensions is
analyzed at finite temperature and chemical potential in the presence of a
uniform magnetic field perpendicular to the plane. The method used is a
generalization of the derivative expansion technique. The induced Chern-Simons
term is computed and shown to exhibit the Hall quantization. Effects of
dissipation due to collisions are also analyzed.Comment: 12 page
Pre-radiotherapy plasma carotenoids and markers of oxidative stress are associated with survival in head and neck squamous cell carcinoma patients: a prospective study
<p>Abstract</p> <p>Background</p> <p>The purpose of this study was to compare plasma levels of antioxidants and oxidative stress biomarkers in head and neck squamous cell carcinoma (HNSCC) patients with healthy controls. Furthermore, the effect of radiotherapy on these biomarkers and their association with survival in HNSCC patients were investigated.</p> <p>Methods</p> <p>Seventy-eight HNSCC patients and 100 healthy controls were included in this study. Follow-up samples at the end of radiotherapy were obtained in 60 patients. Fifteen antioxidant biomarkers (6 carotenoids, 4 tocopherols, ascorbic acid, total antioxidant capacity, glutathione redox potential, total glutathione and total cysteine) and four oxidative stress biomarkers (total hydroperoxides, γ-glutamyl transpeptidase, 8-isoprostagladin F<sub>2α </sub>and ratio of oxidized/total ascorbic acid) were measured in plasma samples. Analysis of Covariance was used to compare biomarkers between patients and healthy controls. Kaplan-Meier plots and Cox' proportional hazards models were used to study survival among patients.</p> <p>Results</p> <p>Dietary antioxidants (carotenoids, tocopherols and ascorbic acid), ferric reducing antioxidant power (FRAP) and modified FRAP were lower in HNSCC patients compared to controls and dietary antioxidants decreased during radiotherapy. Total hydroperoxides (d-ROMs), a marker for oxidative stress, were higher in HNSCC patients compared to controls and increased during radiotherapy. Among the biomarkers analyzed, high levels of plasma carotenoids before radiotherapy are associated with a prolonged progression-free survival (hazard rate ratio: 0.42, 95% CI: 0.20-0.91, p = 0.03). Additionally, high relative increase in plasma levels of d-ROMs (hazard rate ratio: 0.31, 95% CI: 0.13-0.76, p = 0.01) and high relative decrease in FRAP (hazard rate ratio: 0.42, 95% CI: 0.17-0.998, p = 0.05) during radiotherapy are also positively associated with survival.</p> <p>Conclusions</p> <p>Biomarkers of antioxidants and oxidative stress are unfavourable in HNSCC patients compared to healthy controls, and radiotherapy affects many of these biomarkers. Increasing levels of antioxidant biomarkers before radiotherapy and increasing oxidative stress during radiotherapy may improve survival indicating that different factors/mechanisms may be important for survival before and during radiotherapy in HNSCC patients. Thus, the therapeutic potential of optimizing antioxidant status and oxidative stress should be explored further in these patients.</p
Coulomb drag of Luttinger liquids and quantum-Hall edges
We study the transconductance for two coupled one-dimensional wires or edge
states described by Luttinger liquid models. The wires are assumed to interact
over a finite segment. We find for the interaction parameter that the
drag rate is finite at zero temperature, which cannot occur in a Fermi-liquid
system. The zero temperature drag is, however, cut off at low temperature due
to the finite length of the wires. We also consider edge states in the
fractional quantum Hall regime, and we suggest that the low temperature
enhancement of the drag effect might be seen in the fractional quantum Hall
regime.Comment: 5 pages, 2 figures; to appear in Phys. Rev. Let
Strong enhancement of drag and dissipation at the weak- to strong- coupling phase transition in a bi-layer system at a total Landau level filling nu=1
We consider a bi-layer electronic system at a total Landau level filling
factor nu =1, and focus on the transition from the regime of weak inter-layer
coupling to that of the strongly coupled (1,1,1) phase (or ''quantum Hall
ferromagnet''). Making the assumption that in the transition region the system
is made of puddles of the (1,1,1) phase embedded in a bulk of the weakly
coupled state, we show that the transition is accompanied by a strong increase
in longitudinal Coulomb drag, that reaches a maximum of approximately
. In that regime the longitudinal drag is increased with decreasing
temperature.Comment: four pages, one included figur
- …