264 research outputs found

    3D SKELETON CONSTRUCTION FROM MULTIPLE CAMERA VIEWS FOR QUANTIFYING GAIT PARAMETERS

    Get PDF
    Research has shown that human gait characteristics permit inference with respect to different personal and health characteristics and can thus be used as a diagnostic tool. To do this automatically it is important to be able to extract them from senor information. This thesis work is aimed at doing this from multiple camera views and for this focuses on construction of a 3D body skeleton from multiple viewpoint video (MVV) and then quantifying a number of gait characteristics such as swing time, step time, cadence, stride length, single support, or double support. The method introduced here uses a marker-less approach over marker-based approach for skeleton extraction because it significantly reduces preparation time as well as the equipment cost compared to marker-based techniques. The drawback with the marker-less approach is that the processing time is longer because a body model needs to be created. The solution proposed in this thesis attempts to reduce the processing time by using transfer learning utilizing pre-trained deep learning models and then solving inverse projection problem to get the 3D body skeleton. The extracted visual and 3D skeleton data, along with IMU data from different parts of body is then analyzed to quantify gait characteristics. In particular, three Neural Networks were developed and trained to quantify gait characteristics of human body, one each for sensors data, 2D visual body data and 3D body skeleton data. These Neural Networks were trained to classify whether the human body is in a Single support (left leg), Single support (right leg) or Double support phase. The performance of the networks were evaluated against ground truth and the performance based on the different sensor sets were compared. Among the three Neural Networks the classification accuracy using IMU data was better than using both 2D and 3D skeleton data. Among the visually derived models, the accuracy using 3D skeleton data was better than for 2D visual data. In addition, gait characteristics like Gait Velocity, Step time, Stride length, Stride time, Swing time were extracted from the 3D body skeleton and the performance was validated for multiple individuals

    How to assign volunteers to tasks compatibly ? A graph theoretic and parameterized approach

    Full text link
    In this paper we study a resource allocation problem that encodes correlation between items in terms of \conflict and maximizes the minimum utility of the agents under a conflict free allocation. Admittedly, the problem is computationally hard even under stringent restrictions because it encodes a variant of the {\sc Maximum Weight Independent Set} problem which is one of the canonical hard problems in both classical and parameterized complexity. Recently, this subject was explored by Chiarelli et al.~[Algorithmica'22] from the classical complexity perspective to draw the boundary between {\sf NP}-hardness and tractability for a constant number of agents. The problem was shown to be hard even for small constant number of agents and various other restrictions on the underlying graph. Notwithstanding this computational barrier, we notice that there are several parameters that are worth studying: number of agents, number of items, combinatorial structure that defines the conflict among the items, all of which could well be small under specific circumstancs. Our search rules out several parameters (even when taken together) and takes us towards a characterization of families of input instances that are amenable to polynomial time algorithms when the parameters are constant. In addition to this we give a superior 2^{m}|I|^{\Co{O}(1)} algorithm for our problem where mm denotes the number of items that significantly beats the exhaustive \Oh(m^{m}) algorithm by cleverly using ideas from FFT based fast polynomial multiplication; and we identify simple graph classes relevant to our problem's motivation that admit efficient algorithms

    Microwave shielding properties of Co/Ni attached to single walled carbon nanotubes

    Get PDF
    Cobalt/nickel nanoparticles attached to single-walled carbon nanotubes (Co/Ni@SWCNTs) were prepared by dc-arc discharge technique. Co/Ni@SWCNTs were characterized by scanning electron microscopy, high resolution transmission electron microscopy (HRTEM), Raman spectroscopy and energy dispersive X-ray analysis techniques. HRTEM results confirmed attachment of magnetic nanoparticles onto SWCNTs having 1.2 nm diameter. A microwave shielding effectiveness value of 24 dB (blocking >99% radiation) by a 1.5 mm thick sample in the frequency range of 12.4-18 GHz was observed. In order to understand the mechanism of shielding, dielectric andmagnetic attributes of the shielding effectiveness of Co/Ni@SWCNTs have been evaluated. Eddy currents and natural resonances due to the presence of magnetic nanoparticles, electronic polarization and their relaxation, interfacial polarization and unique composition of the shield contributed significantly in achieving good shielding effectiveness. The observed microwave shielding crossed the limit required for commercial applications which suggests that these nanocomposites are promising microwave shielding materials in the Ku band

    Parameterized Algorithms and Kernels for Rainbow Matching

    Get PDF

    DENTAL MANAGEMENT OF CHILD WITH HORNER SYNDROME: A CASE REPORT

    Get PDF
    Aim: The purpose of the case report was to highlight the various features of Horner syndrome to aid in diagnosing this syndrome, which has classic clinical features like miosis, ptosis, and anhidrosis, along with poor oral hygiene and carious teeth. Background: Francois Pourfour du Petit originally defined the disease in 1727 when discussing the outcomes of an animal experiment in which intercostal nerves were removed, and the ipsilateral eye and face were the subsequent subjects of modifications. Claude Bernard, a French physiologist, provided a more detailed description of it in 1852 Case report: Thus, to highlight the features of Horner syndrome, we are presenting a case report of a 6-year-old female child who reported to the department with a chief complaint of pain in the lower correct back teeth region. There was no significant prenatal or postnatal history.   Article visualizations
    corecore