146 research outputs found

    Macronutrient intake and simulated infection threat independently affect life history traits of male decorated crickets.

    Get PDF
    Nutritional geometry has advanced our understanding of how macronutrients (e.g., proteins and carbohydrates) influence the expression of life history traits and their corresponding trade-offs. For example, recent work has revealed that reproduction and immune function in male decorated crickets are optimized at very different protein:carbohydrate (P:C) dietary ratios. However, it is unclear how an individual's macronutrient intake interacts with its perceived infection status to determine investment in reproduction or other key life history traits. Here, we employed a fully factorial design in which calling effort and immune function were quantified for male crickets fed either diets previously demonstrated to maximize calling effort (P:C = 1:8) or immune function (P:C = 5:1), and then administered a treatment from a spectrum of increasing infection cue intensity using heat-killed bacteria. Both diet and a simulated infection threat independently influenced the survival, immunity, and reproductive effort of males. If they called, males increased calling effort at the low infection cue dose, consistent with the terminal investment hypothesis, but interpretation of responses at the higher threat levels was hampered by the differential mortality of males across infection cue and diet treatments. A high protein, low carbohydrate diet severely reduced the health, survival, and overall fitness of male crickets. There was, however, no evidence of an interaction between diet and infection cue dose on calling effort, suggesting that the threshold for terminal investment was not contingent on diet as investigated here

    Genetic covariance in immune measures and pathogen resistance in decorated crickets is sex and pathogen specific

    Get PDF
    Insects are important models for studying immunity in an ecological and evolutionary context. Yet, most empirical work on the insect immune system has come from phenotypic studies meaning we have a limited understanding of the genetic architecture of immune function in the sexes. We use nine highly inbred lines to thoroughly examine the genetic relationships between a suite of commonly used immune assays (haemocyte count, implant encapsulation, total phenoloxidase activity, antibacterial zone of inhibition and pathogen clearance) and resistance to infection by three generalist insect pathogens (the gram-negative bacterium Serratia marcescens, the gram-positive bacterium Bacillus cereus and the fungus Metarhizium robertsii) in male and female Gryllodes sigillatus. There were consistent positive genetic correlations between haemocyte count, antibacterial and phenoloxidase activity and resistance to S. marcescens in both sexes, but these relationships were less consistent for resistance to B. cereus and M. robertsii. In addition, the clearance of S. marcescens was genetically correlated with the resistance to all three pathogens in both sexes. Genetic correlations between resistances to the different pathogen species were inconsistent, indicating that resistance to one pathogen does not necessarily mean resistance to another. Finally, while there is ample genetic (co)variance in immune assays and pathogen resistance, these genetic estimates differed across the sexes and many of these measures were not genetically correlated across the sexes, suggesting that these measures could evolve independently in the sexes. Our finding that the genetic architecture of immune function is sex and pathogen specific suggests that the evolution of immune function in male and female G. sigillatus is likely to be complex. Similar quantitative genetic studies that measure a large number of assays and resistance to multiple pathogens in both sexes are needed to ascertain if this complexity extends to other species

    Evolution of immune function in response to dietary macronutrients in male and female decorated crickets

    Get PDF
    Although dietary macronutrients are known to regulate insect immunity, few studies have examined their evolutionary effects. Here, we evaluate this relationship in the cricket Gryllodes sigillatus by maintaining replicate populations on four diets differing in protein (P) to carbohydrate (C) ratio (P- or C-biased) and nutritional content (low- or high-nutrition) for >37 generations. We split each population into two; one maintained on their evolution diet and the other switched to their ancestral diet. We also maintained populations exclusively on the ancestral diet (baseline). After three generations, we measured three immune parameters in males and females from each population. Immunity was higher on P-biased than C-biased diets and on low- versus high-nutrition diets, although the latter was most likely driven by compensatory feeding. These patterns persisted in populations switched to their ancestral diet, indicating genetic divergence. Crickets evolving on C-biased diets had lower immunity than the baseline, whereas their P-biased counterparts had similar or higher immunity than the baseline, indicating that populations evolved with dietary manipulation. Although females exhibited superior immunity for all assays, the sexes showed similar immune changes across diets. Our work highlights the important role that macronutrient intake plays in the evolution of immunity in the sexes

    Active and covert infections of cricket Iridovirus and Acheta domesticus Densovirus in reared Gryllodes sigillatus crickets

    Get PDF
    Interest in developing food, feed, and other useful products from farmed insects has gained remarkable momentum in the past decade. Crickets are an especially popular group of farmed insects due to their nutritional quality, ease of rearing, and utility. However, production of crickets as an emerging commodity has been severely impacted by entomopathogenic infections, about which we know little. Here, we identified and characterized an unknown entomopathogen causing mass mortality in a lab-reared population of Gryllodes sigillatus crickets, a species used as an alternative to the popular Acheta domesticus due to its claimed tolerance to prevalent entomopathogenic viruses. Microdissection of sick and healthy crickets coupled with metagenomics-based identification and real-time qPCR viral quantification indicated high levels of cricket iridovirus (CrIV) in a symptomatic population, and evidence of covert CrIV infections in a healthy population. Our study also identified covert infections of Acheta domesticus densovirus (AdDNV) in both populations of G. sigillatus. These results add to the foundational research needed to better understand the pathology of mass-reared insects and ultimately develop the prevention, mitigation, and intervention strategies needed for economical production of insects as a commodity

    Spring temperatures influence selection on breeding date and the potential for phenological mismatch in a migratory bird

    Get PDF
    Climate change has affected the seasonal phenology of a variety of taxa, including that of migratory birds and their critical food resources. However, whether climate-induced changes in breeding phenology affect individual fitness, and how these changes might, therefore, influence selection on breeding date remain unresolved. Here, we use a 36-year dataset from a long-term, individual-based study of House Wrens (Troglodytes aedon) to test whether the timing of avian breeding seasons is associated with annual changes in temperature, which have increased to a small but significant extent locally since the onset of the study in 1980. Increasing temperature was associated with an advancement of breeding date in the population, as the onset of breeding within years was closely associated with daily spring temperatures. Warmer springs were also associated with a reduced incubation period, but reduced incubation periods were associated with a prolonged duration of nestling provisioning. Nest productivity, in terms of fledgling production, was not associated with temperature, but wetter springs reduced fledging success. Most years were characterized by selection for earlier breeding, but cool and wet years resulted in stabilizing selection on breeding date. Our results indicate that climate change and increasing spring temperatures can affect suites of life-history traits, including selection on breeding date. Increasing temperatures may favor earlier breeding, but the extent to which the phenology of populations might advance may be constrained by reductions in fitness associated with early breeding during cool, wet years. Variability in climatic conditions will, therefore, shape the extent to which seasonal organisms can respond to changes in their environment.Peer reviewedIntegrative Biolog

    No direct or indirect benefits to cryptic female choice in house crickets (Acheta domesticus)

    No full text
    Cryptic female choice in crickets occurs through the premature removal of a male's spermatophore after copulation, which terminates sperm transfer. Although it is known that this behavior can directly influence the paternity of offspring, its effects on female fitness have not been directly assessed. We tested the hypothesis that spermatophore removal by female house crickets (Acheta domesticus) confers fitness benefits on females, by randomly assigning mates to females but permitting some females to freely remove spermatophores after mating (cryptic-choice treatment) while forcing others to accept complete ejaculates (no-choice treatment). Although there was about a two-fold difference in the volume of ejaculate received by females of the two treatments, there were no significant differences in female longevity, reproductive output, or offspring quality, as measured by offspring mass and developmental time. Although differential spermatophore removal by females imposes strong sexual selection on males, the absence of a clear treatment effect suggests that females obtain no direct or indirect genetic benefits through their postcopulatory mating preferences. Copyright 2004.Acheta domesticus; crickets; cryptic female choice; indirect genetic benefits; offspring fitness; spermatophore; sexual selection

    Mate choice

    No full text
    Much progress has been made over the last 30 years showing the complexity of female mate choice. There is now a better understanding of why females choose certain males over others, as well as the various mechanisms used to make mate choice decisions. It is also known that female mate choice can exert significant sexual selection on male sexual traits and that there is likely to be a strong genetic basis to mate choice, as well as significant positive genetic covariance between mate choice and the expression of the preferred sexual trait. However, female mate choice does not always drive the evolutionary divergence of male sexual traits in a predictable way, and the role of female mate choice in facilitating reproductive isolation and speciation is likely to be even more complex. More research on mate choice in insects is still needed and this chapter outlines some future directions

    data on amino acid composition of spermatophylax

    No full text
    Excel file, variation in amino acid composition of the spermatophylax as a function of inbred line (A-I) and as determined by GC/M

    behavior data on gift feeding durations

    No full text
    MS Excel file, time spent feeding by females on nuptial food gifts, females originated from three groups: inbred Gryllodes (lines A-I), outbred Gryllodes (=col) and Acheta females; we recorded latency to accept gift (=latency) and time spent feeding (duration
    • …
    corecore