2,916 research outputs found

    Magentic-Field Induced Quantum Phase Transition and Critical Behavior in a Gapped Spin System TlCuCl3_3

    Full text link
    Magnetization measurements were performed on TlCuCl3_3 with gapped ground state. The critical density and the magnetic phase diagram were obtained. The interacting constant was obtained as U/kB=313U/k_{\rm B} = 313 K. The experimental phase boundary for T<5T < 5 K agrees perfectly with the magnon BEC theory based on the Hartree-Fock approximation with realistic dispersion relations and U/kB=320U/k_{\rm B} = 320 K. The exponent ϕ\phi obtained with all the data points for T<5T < 5 K is ϕ=1.99\phi = 1.99, which is somewhat larger than theoretical exponent ϕBEC=3/2\phi_{\rm BEC} =3/2. However, it was found that the exponent converges at ϕBEC=3/2\phi_{\rm BEC} =3/2 with decreasing fitting window.Comment: 2 pages, 2 figures, Submitted to Proceedings of International Conference on Magnetism (ICM2006

    Thermodynamic properties of quadrupolar states in the frustrated pyrochlore magnet Tb2_2Ti2_2O7_7

    Get PDF
    The low-temperature thermodynamic properties of the frustrated pyrochlore Tb2+x_{2+x}Ti2x_{2-x}O7+y_{7+y} have been studied using the single crystal of x=0.005x=0.005 sitting in a long range ordered phase in the xx-TT phase diagram. We observed that the specific heat exhibits a minimum around 2 K and slightly increases on cooling, similar to a Schottky-like anomaly for canonical spin ices. A clear specific-heat peak observed at Tc=0.53T_{\rm c} = 0.53 K is ascribable to the phase transition to a quadrupolar state, which contributes to a relatively large change in entropy, S2.7S \simeq 2.7 J K1^{-1}mol1^{-1}. However, it is still smaller than Rln2R\ln2 for the ground state doublet of the Tb ions. The entropy release persists to higher temperatures, suggesting strong fluctuations associated with spin ice correlations above TcT_{\rm c}. We discuss the field dependence of the entropy change for H[111]H||[111] and H[001]H||[001].Comment: 6 pages, 2 figure

    Observation of Modulated Quadrupolar Structures in PrPb3

    Full text link
    Neutron diffraction measurements have been performed on the cubic compound PrPb3 in a [001] magnetic field to examine the quadrupolar ordering. Antiferromagnetic components with q=(1/2+-d 1/2 0), (1/2 1/2+-d 0) (d~1/8) are observed below the transition temperature TQ (0.4 K at H=0) whose amplitudes vary linear with H and vanish at zero field, providing the first evidence for a modulated quadrupolar phase. For H<1 T, a non-square modulated state persists even below 100 mK suggesting quadrupole moments associated with a Gamma3 doublet ground state to be partially quenched by hybridization with conduction electrons.Comment: Physical Review Letters, in press. 4 pages, 4 figure

    Metamagnetic Quantum Criticality Revealed by 17O-NMR in the Itinerant Metamagnet Sr3Ru2O7

    Full text link
    We have investigated the spin dynamics in the bilayered perovskite Sr3Ru2O7 as a function of magnetic field and temperature using 17O-NMR. This system sits close to a metamagnetic quantum critical point (MMQCP) for the field perpendicular to the ruthenium oxide planes. We confirm Fermi-liquid behavior at low temperatures except for a narrow field region close to the MMQCP. The nuclear spin-lattice relaxation rate divided by temperature 1/T1T is enhanced on approaching the metamagnetic critical field of 7.9 T and at the critical field 1/T1T continues to increase and does not show Fermi- liquid behavior down to 0.3 K. The temperature dependence of T1T in this region suggests the critical temperature Theta to be 0 K, which is a strong evidence that the spin dynamics possesses a quantum critical character. Comparison between uniform susceptibility and 1/T1T reveals that antiferromagnetic fluctuations instead of two-dimensional ferromagnetic fluctuations dominate the spin fluctuation spectrum at the critical field, which is unexpected for itinerant metamagnetism.Comment: 5 pages, 4 figures, Accepted by Phys. Rev. Let
    corecore