114 research outputs found

    Intersubband absorption linewidth in GaAs quantum wells due to scattering by interface roughness, phonons, alloy disorder, and impurities

    Full text link
    We calculate the intersubband absorption linewidth in quantum wells (QWs) due to scattering by interface roughness, LO phonons, LA phonons, alloy disorder, and ionized impurities, and compare it with the transport energy broadening that corresponds to the transport relaxation time related to electron mobility. Numerical calculations for GaAs QWs clarify the different contributions of each individual scattering mechanism to absorption linewidth and transport broadening. Interface roughness scattering contributes about an order of magnitude more to linewidth than to transport broadening, because the contribution from the intrasubband scattering in the first excited subband is much larger than that in the ground subband. On the other hand, LO phonon scattering (at room temperature) and ionized impurity scattering contribute much less to linewidth than to transport broadening. LA phonon scattering makes comparable contributions to linewidth and transport broadening, and so does alloy disorder scattering. The combination of these contributions with significantly different characteristics makes the absolute values of linewidth and transport broadening very different, and leads to the apparent lack of correlation between them when a parameter, such as temperature or alloy composition, is changed. Our numerical calculations can quantitatively explain the previously reported experimental results.Comment: 17 pages, including 15 figure

    Cooling of radiative quantum-dot excitons by terahertz radiation: A spin-resolved Monte Carlo carrier dynamics model

    Full text link
    We have developed a theoretical model to analyze the anomalous cooling of radiative quantum dot (QD) excitons by THz radiation reported by Yusa et al [Proc. 24th ICPS, 1083 (1998)]. We have made three-dimensional (3D) modeling of the strain and the piezoelectric field and calculated the 3D density of states of strain induced quantum dots. On the basis of this analysis we have developed a spin dependent Monte Carlo model, which describes the carrier dynamics in QD's when the intraband relaxation is modulated by THz radiation. We show that THz radiation causes resonance transfer of holes from dark to radiative states in strain-induced QD's. The transition includes a spatial transfer of holes from the piezoelectric potential mimima to the deformation potential minimum. This phenomenon strongly enhances the QD ground state luminescence at the expense of the luminescence from higher states. Our model also reproduces the delayed flash of QD ground state luminescence, activated by THz radiation even 1\sim1 s after the carrier generation. Our simulations suggest a more general possibility to cool the radiative exciton subsystem in optoelectronic devices.Comment: 18 pages, 1 table, 8 figures, submitted to Physical Review B v2: major conceptual changes. The article was extended considerably to suit Physical Review B (instead of Physical Review Letters

    Combining hot-compressed water and ball milling pretreatments to improve the efficiency of the enzymatic hydrolysis of eucalyptus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Lignocellulosic biomass such as wood is an attractive material for fuel ethanol production. Pretreatment technologies that increase the digestibility of cellulose and hemicellulose in the lignocellulosic biomass have a major influence on the cost of the subsequent enzymatic hydrolysis and ethanol fermentation processes. Pretreatments without chemicals such as acids, bases or organic solvents are less effective for an enzymatic hydrolysis process than those with chemicals, but they have a less negative effect on the environment.</p> <p>Results</p> <p>The enzymatic digestibility of eucalyptus was examined following a combined pretreatment without chemicals comprising a ball milling (BM) and hot-compressed water (HCW) treatment. The BM treatment simultaneously improved the digestibility of both glucan and xylan, and was effective in lowering the enzyme loading compared with the HCW treatment. The combination of HCW and BM treatment reduced the BM time. The eucalyptus treated with HCW (160°C, 30 minutes) followed by BM (20 minutes) had an approximately 70% yield of total sugar with a cellulase loading of 4 FPU/g substrate. This yield was comparable to the yields from samples treated with HCW (200°C, 30 minutes) or BM (40 minutes) hydrolyzed with 40 FPU/g substrate.</p> <p>Conclusion</p> <p>The HCW treatment is useful in improving the milling efficiency. The combined HCW-BM treatment can save energy and enzyme loading.</p

    CLINICOPATHOLOGICAL STUDY OF CEREBRAL SUBCORTICAL CAVERNOUS ANGIOMA AS EPILEPTOGENIC FOCUS

    Get PDF
    The authors conducted a comparative histological study of two groups of patients with cerebral subcortical cavernous angioma. One group was composed of 5 asymptomatic cases detected accidentally. The other group was composed of 4 patients presenting as epilepsy. The results obtained may be summarized as follows ; 1) Hemosiderin deposit and gliosis were seen in all cases examined ; 2) Granulomatous change was a histological finding associated with epileptogenesis ; 3) The histological changes, starting with proliferation of collagen fibers and leading to hyaline degeneration, calcification, and then hemangioma calcificans, seem to represent a course of spontaneous healing, when viewed from epileptogenesis

    Electron--Electron Scattering in Quantum Wires and it's Possible Suppression due to Spin Effects

    Full text link
    A microscopic picture of electron-electron pair scattering in single mode quantum wires is introduced which includes electron spin. A new source of `excess' noise for hot carriers is presented. We show that zero magnetic field `spin' splitting in quantum wires can lead to a dramatic `spin'-subband dependence of electron--electron scattering, including the possibility of strong suppression. As a consequence extremely long electron coherence lengths and new spin-related phenomena are predicted. Since electron bands in III-V semiconductor quantum wires are in general spin-split in zero applied magnetic field, these new transport effects are of general importance.Comment: 11 pages, LaTeX and APS-RevteX 2, Rep.No. GF66,Figures from author, Physical Review Letters, scheduled for 7 June 199

    Localization and Quantum Hall Effect in Two-Dimensional Systems Under Strong Magnetic Fields(Transport and Fermiology)

    Get PDF
    Experimental researches of quantum transport properties of semiconductor two-dimensional electron systems in Si-MOSFETs and GaAs/AlGaAs heterostructures in high magnetic fields up to 27 T and at low temperatures down to 20 mK are performed. Analysis of the Hall conductivity of Si-MOSFETs based on a mobility edge model shows that the temperature dependence of the mobility edge can not be explained by existing theory of localization. The fractional quantum Hall effect is observed at the filling factor of 1/7 in heterostructures. Sample size dependence and magnetic field dependence of the breakdown of the integral quantum Hall effect in heterostructures reveal that the Hall current is carried not by the edge states but by the extended states in the localization in the bulk of the two-dimensional systems

    Molecular analysis of a variant type of familial amyloidotic polyneuropathy showing cerebellar ataxia and pyramidal tract signs

    Get PDF
    金沢大学がん研究所がん分子細胞制御A Japanese family with atypical type I familial amyloidotic polyneuropathy (FAP) in Iiyama, Japan, was studied. Most of the family members have dysfunctions of the central nervous system, in addition to typical symptoms of type I FAP. The transthyretin (TTR, also called prealbumin) gene of the atypical FAP (FAP-IY) was analyzed with recombinant DNA techniques and a RIA method. FAP-IY was found to have the mutation responsible for the methionine-for-valine substitution at position 30 of TTR, as in the case of typical type I FAP. However, analysis of DNA polymorphisms in the TTR locus showed that FAP-IY has a genetic background differing from that of the typical type I FAP. These observations lead to the consideration that a genetic factor(s) involved in the dysfunction of the central nervous system may locate in a chromosome region in close proximity to the TTR gene

    A programmable optical angle clamp for rotary molecular motors

    Get PDF
    Optical tweezers are widely used for experimental investigation of linear molecular motors. The rates and force dependence of steps in the mechanochemical cycle of linear motors have been probed giving detailed insight into motor mechanisms. With similar goals in mind for rotary molecular motors we present here an optical trapping system designed as an angle clamp to study the bacterial flagellar motor and F(1)-ATPase. The trap position was controlled by a digital signal processing board and a host computer via acousto-optic deflectors, the motor position via a three-dimensional piezoelectric stage and the motor angle using a pair of polystyrene beads as a handle for the optical trap. Bead-pair angles were detected using back focal plane interferometry with a resolution of up to 1 degrees , and controlled using a feedback algorithm with a precision of up to 2 degrees and a bandwidth of up to 1.6 kHz. Details of the optical trap, algorithm, and alignment procedures are given. Preliminary data showing angular control of F(1)-ATPase and angular and speed control of the bacterial flagellar motor are presented
    corecore