590 research outputs found

    What happens to Q-balls if QQ is so large?

    Full text link
    In the system of a gravitating Q-ball, there is a maximum charge QmaxQ_{{\rm max}} inevitably, while in flat spacetime there is no upper bound on QQ in typical models such as the Affleck-Dine model. Theoretically the charge QQ is a free parameter, and phenomenologically it could increase by charge accumulation. We address a question of what happens to Q-balls if QQ is close to QmaxQ_{{\rm max}}. First, without specifying a model, we show analytically that inflation cannot take place in the core of a Q-ball, contrary to the claim of previous work. Next, for the Affleck-Dine model, we analyze perturbation of equilibrium solutions with Q≈QmaxQ\approx Q_{{\rm max}} by numerical analysis of dynamical field equations. We find that the extremal solution with Q=QmaxQ=Q_{{\rm max}} and unstable solutions around it are "critical solutions", which means the threshold of black-hole formation.Comment: 9 pages, 10 figures, results for large κ\kappa added, to appear in PR

    Stability of Q-balls and Catastrophe

    Full text link
    We propose a practical method for analyzing stability of Q-balls for the whole parameter space, which includes the intermediate region between the thin-wall limit and thick-wall limit as well as Q-bubbles (Q-balls in false vacuum), using the catastrophe theory. We apply our method to the two concrete models, V3=m2ϕ2/2−μϕ3+λϕ4V_3=m^2\phi^2/2-\mu\phi^3+\lambda\phi^4 and V4=m2ϕ2/2−λϕ4+ϕ6/M2V_4=m^2\phi^2/2-\lambda\phi^4+\phi^6/M^2. We find that V3V_3 and V4V_4 Models fall into {\it fold catastrophe} and {\it cusp catastrophe}, respectively, and their stability structures are quite different from each other.Comment: 9 pages, 4 figures, some discussions and references added, to apear in Prog. Theor. Phy

    Optimal supply against fluctuating demand

    Get PDF
    Sornette et al. claimed that the optimal supply does not agree with the average demand, by analyzing a bakery model where a daily demand fluctuates with a uniform distribution. In this note, we extend the model to general probability distributions, and obtain the formula of the optimal supply for Gaussian distribution, which is more realistic. Our result is useful in a real market to earn the largest income on average.Comment: 2 page

    How does gravity save or kill Q-balls?

    Full text link
    We explore stability of gravitating Q-balls with potential V4(ϕ)=m22ϕ2−λϕ4+ϕ6M2V_4(\phi)={m^2\over2}\phi^2-\lambda\phi^4+\frac{\phi^6}{M^2} via catastrophe theory, as an extension of our previous work on Q-balls with potential V3(ϕ)=m22ϕ2−μϕ3+λϕ4V_3(\phi)={m^2\over2}\phi^2-\mu\phi^3+\lambda\phi^4. In flat spacetime Q-balls with V4V_4 in the thick-wall limit are unstable and there is a minimum charge QminQ_{{\rm min}}, where Q-balls with Q<QminQ<Q_{{\rm min}} are nonexistent. If we take self-gravity into account, on the other hand, there exist stable Q-balls with arbitrarily small charge, no matter how weak gravity is. That is, gravity saves Q-balls with small charge. We also show how stability of Q-balls changes as gravity becomes strong.Comment: 10 pages, 10 figure
    • …
    corecore