23 research outputs found

    The seasonal variations of atmospheric 134,137Cs activity and possible host particles for their resuspension in the contaminated areas of Tsushima and Yamakiya, Fukushima, Japan

    Get PDF
    A large quantity of radionuclides was released by the Fukushima Daiichi Nuclear Power Plant accident in March 2011, and those deposited on ground and vegetation could return to the atmosphere through resuspension processes. Although the resuspension has been proposed to occur with wind blow, biomass burning, ecosystem activities, etc., the dominant process in contaminated areas of Fukushima is not fully understood. We have examined the resuspension process of radiocesium (134,137Cs) based on long-term measurements of the atmospheric concentration of radiocesium activity (the radiocesium concentration) at four sites in the contaminated areas of Fukushima as well as the aerosol characteristic observations by scanning electron microscopy (SEM) and the measurement of the biomass burning tracer, levoglucosan.The radiocesium concentrations at all sites showed a similar seasonal variation: low from winter to early spring and high from late spring to early autumn. In late spring, they showed positive peaks that coincided with the wind speed peaks. However, in summer and autumn, they were correlated positively with atmospheric temperature but negatively with wind speed. These results differed from previous studies based on data at urban sites. The difference of radiocesium concentrations at two sites, which are located within a 1 km range but have different degrees of surface contamination, was large from winter to late spring and small in summer and autumn, indicating that resuspension occurs locally and/or that atmospheric radiocesium was not well mixed in winter/spring, and it was opposite in summer/autumn. These results suggest that the resuspension processes and the host particles of the radiocesium resuspension changed seasonally. The SEM analyses showed that the dominant coarse particles in summer and autumn were organic ones, such as pollen, spores, and microorganisms. Biological activities in forest ecosystems can contribute considerably to the radiocesium resuspension in these seasons. During winter and spring, soil, mineral, and vegetation debris were predominant coarse particles in the atmosphere, and the radiocesium resuspension in these seasons can be attributed to the wind blow of these particles. Any proofs that biomass burning had a significant impact on atmospheric radiocesium were not found in the present study

    Assessment of Olfactory Nerve by SPECT-MRI Image with Nasal Thallium-201 Administration in Patients with Olfactory Impairments in Comparison to Healthy Volunteers

    Get PDF
    Purpose: The aim of this study was to assess whether migration of thallium-201 (201Tl) to the olfactory bulb were reduced in patients with olfactory impairments in comparison to healthy volunteers after nasal administration of 201Tl. Procedures: 10 healthy volunteers and 21 patients enrolled in the study (19 males and 12 females; 26-71 years old). The causes of olfactory dysfunction in the patients were head trauma (n = 7), upper respiratory tract infection (n = 7), and chronic rhinosinusitis (n = 7). 201TlCl was administered unilaterally to the olfactory cleft, and SPECT-CT was conducted 24 h later. Separate MRI images were merged with the SPECT images. 201Tl olfactory migration was also correlated with the volume of the olfactory bulb determined from MRI images, as well as with odor recognition thresholds measured by using T&T olfactometry. Results: Nasal201Tl migration to the olfactory bulb was significantly lower in the olfactory-impaired patients than in healthy volunteers. The migration of 201Tl to the olfactory bulb was significantly correlated with odor recognition thresholds obtained with T&T olfactometry and correlated with the volume of the olfactory bulb determined from MRI images when all subjects were included. Conclusions: Assessment of the 201Tl migration to the olfactory bulb was the new method for the evaluation of the olfactory nerve connectivity in patients with impaired olfaction. © 2013 Shiga et al

    Development of Japanese Voxel Phantoms and Dose Evaluation

    No full text

    Overview of computational mouse models

    No full text
    The review in this chapter summarizes the history of development of the major computational mouse models during the last two decades with some provision about what to expect in the near future for their application in preclinical research, radiation dosimetry calculations and imaging physics research

    Overview of computational frog models

    No full text
    To the authors\u27 best knowledge, there are limited investigations on computational frog models and the organ dose evaluations for frogs in environmental protection. In this chapter, computational frog models and their applications are reviewed to share some perspectives of frog model development in the near future

    Long-term predictions of ambient dose equivalent rates after the Fukushima Daiichi nuclear power plant accident

    No full text
    <p>To analyze radiation protection strategies and rehabilitation programs in Fukushima, prediction models have been developed for ambient dose equivalent rate distributions within the 80 km-radius around the Fukushima Daiichi nuclear power plant. The prediction models characterized by ecological half-lives of radioactive caesium for land-use, enable Fukushima residents to obtain distribution maps of ambient dose equivalent rates after the Fukushima Daiichi nuclear power plant accident. Model parameters such as the ecological half-lives for the short-term component and the fractional distribution of short-term component were evaluated using ambient dose equivalent rates through car/vehicle-borne surveys. It was found that the ecological half-lives among land-use differ only slightly, whereas the fractional distributions of the short-term component are clearly dependent on land-use. In addition, uncertainties concerning predictions of ambient dose equivalent rates arising from variability in model parameters were assessed using Monte Carlo simulations. Long-term changes of ambient dose equivalent rates were predicted for different land-use areas. Distribution maps of ambient dose equivalent rates for the next 30 years after the accident, created by the prediction models are expected to be useful for follow-up of the radiological situation since they provide information on the space variation of the ambient dose equivalent rates in inhabited areas.</p
    corecore