231 research outputs found

    Advances in Drug Design of Radiometal-Based Imaging Agents for Bone Disorders

    Get PDF
    Nuclear medicine bone imaging has been the optimum diagnosis for the detection of bone disorders because the lesion could be detectable before the appearance of symptomatic and radiographic changes. Over the past three decades, 99mTc-MDP and 99mTc-HMDP have been used as bone scintigraphic agents because of their superior biodistribution characteristics, although they are far from optimal from a chemical and pharmaceutical point of view. Recently, a more logical drug design has been proposed as a concept of bifunctional radiopharmaceuticals in which the carrier molecules (bisphosphonates) and radiometal chelating groups are separated within a molecule, specifically, 99mTc-mononuclear complex-conjugated bisphosphonate. Some of the 99mTc-mononuclear complex-conjugated bisphosphonate compounds showed superior biodistribution in preclinical studies. Moreover, the drug design concept could be applied to 68Ga PET bone imaging agents. These studies would provide useful information for the development of radiometal-based imaging and therapeutic agents for bone disorders such as bone metastases

    SPECT Imaging Agents for Detecting Cerebral β-Amyloid Plaques

    Get PDF
    The development of radiotracers for use in vivo to image β-amyloid (Aβ) plaques in cases of Alzheimer's disease (AD) is an important, active area of research. The presence of Aβ aggregates in the brain is generally accepted as a hallmark of AD. Since the only definitive diagnosis of AD is by postmortem staining of affected brain tissue, the development of techniques which enable one to image Aβ plaques in vivo has been strongly desired. Furthermore, the quantitative evaluation of Aβ plaques in the brain could facilitate evaluation of the efficacy of antiamyloid therapies currently under development. This paper reviews the current situation in the development of agents for SPECT-based imaging of Aβ plaques in Alzheimer's brains

    Evaluation of the Relationship Between Cognitive Impairment, Glycometabolism, and Nicotinic Acetylcholine Receptor Deficits in a Mouse Model of Alzheimer's Disease

    Get PDF
    PURPOSE: In patients with Alzheimer's disease (AD), the loss of cerebral nicotinic acetylcholine receptors (nAChRs) that are implicated in higher brain functions has been reported. However, it is unclear if nAChR deficits occur in association with cognitive impairments. The purpose of this study was to assess the relationship between nAChR deficits and cognitive impairments in a mouse model of AD (APP/PS2 mice). PROCEDURES: The cognitive abilities of APP/PS2 and wild-type mice (aged 2-16 months) were evaluated using the novel object recognition test. Double-tracer autoradiography analyses with 5-[125I]iodo-A-85380 ([125I]5IA: α4β2 nAChR imaging probe) and 2-deoxy-2-[18F]fluoro-D-glucose were performed in both mice of different ages. [123I]5IA-single-photon emission tomography (SPECT) imaging was also performed in both mice at 12 months of age. Furthermore, each age cohort was investigated for changes in cognitive ability and expression levels of α7 nAChRs and N-methyl-D-aspartate receptors (NMDARs). RESULTS: No significant difference was found between the APP/PS2 and wild-type mice at 2-6 months of age in terms of novel object recognition memory; subsequently, however, APP/PS2 mice showed a clear cognitive deficit at 12 months of age. [125I]5IA accumulation decreased in the brains of 12-month-old APP/PS2 mice, i.e., at the age at which cognitive impairments were first observed; this result was supported by a reduction in the protein levels of α4 nAChRs using Western blotting. nAChR deficits could be noninvasively detected by [123I]5IA-SPECT in vivo. In contrast, no significant changes in glycometabolism, expression levels of α7 nAChRs, or NMDARs were associated with cognitive impairments in APP/PS2 mice. CONCLUSION: A decrease in cerebral α4β2 nAChR density could act as a biomarker reflecting cognitive impairments associated with AD pathology

    Development of an oxygen-sensitive degradable peptide probe for the imaging of hypoxia-inducible factor-1-active regions in tumors.

    Get PDF
    [Purpose]We aimed to develop a radiolabeled peptide probe for the imaging of hypoxia-inducible factor-1 (HIF-1)-active tumors. [Procedures]We synthesized the peptide probes that contain or lack an essential sequence of the oxygen-dependent degradation of HIF-1α in proteasomes ([123/125]I-DKOP30 or [125]I-mDKOP, respectively). The degradation of probes was evaluated in vitro using cell lysates containing proteasomes. In vivo biodistribution study, planar imaging, autoradiography, and comparison between probe accumulation and HIF-1 transcriptional activity were also performed. [Results]The [125]I-DKOP30 underwent degradation in a proteasome-dependent manner, while [125]I-mDKOP was not degraded. Biodistribution analysis showed [125]I-DKOP30 accumulation in tumors. The tumors were clearly visualized by in vivo imaging, and intratumoral distribution of [125]I-DKOP30 coincided with the HIF-1α-positive hypoxic regions. Tumoral accumulation of 125I-DKOP30 was significantly correlated with HIF-1-dependent luciferase bioluminescence, while that of [125]I-mDKOP was not. [Conclusion] [123]I-DKOP30 is a useful peptide probe for the imaging of HIF-1-active tumors

    Development and characterization of a 68Ga-labeled A20FMDV2 peptide probe for the PET imaging of αvβ6 integrin-positive pancreatic ductal adenocarcinoma

    Get PDF
    Pancreatic ductal adenocarcinoma (PDAC) is known to be one of the most lethal cancers. Since the majority of patients are diagnosed at an advanced stage, development of a detection method for PDAC at an earlier stage of disease progression is strongly desirable. Integrin αVβ6 is a promising target for early PDAC detection because its expression increases during precancerous changes. The present study aimed to develop an imaging probe for positron emission tomography (PET) which targets αVβ6 integrin-positive PDAC. We selected A20FMDV2 peptide, which binds specifically to αvβ6 integrin, as a probe scaffold, and 68Ga as a radioisotope. A20FMDV2 peptide has not been previously labeled with 68Ga. A cysteine residue was introduced to the N-terminus of the probe at a site-specific conjugation of maleimide-NOTA (mal-NOTA) chelate. Different numbers of glycine residues were also introduced between cysteine and the A20FMDV2 sequence as a spacer in order to reduce the steric hindrance of the mal-NOTA on the binding probe to αVβ6 integrin. In vitro, the competitive binding assay revealed that probes containing a 6-glycine linker ([natGa]CG6 and [natGa]Ac-CG6) showed high affinity to αVβ6 integrin. Both probes could be labeled by 67/68Ga with high radiochemical yield (>50%) and purity (>98%). On biodistribution analysis, [67Ga]Ac-CG6 showed higher tumor accumulation, faster blood clearance, and lower accumulation in the surrounding organs of pancreas than did [67Ga]CG6. The αVβ6 integrin-positive xenografts were clearly visualized by PET imaging with [68Ga]Ac-CG6. The intratumoral distribution of [68Ga]Ac-CG6 coincided with the αVβ6 integrin-positive regions detected by immunohistochemistry. Thus, [68Ga]Ac-CG6 is a useful peptide probe for the imaging of αVβ6 integrin in PDAC

    Noninvasive evaluation of nicotinic acetylcholine receptor availability in mouse brain using single-photon emission computed tomography with [(123)I]5IA.

    Get PDF
    INTRODUCTION: Nicotinic acetylcholine receptors (nAChRs) are of great interest because they are implicated in higher brain functions. Nuclear medical imaging is one of the useful techniques for noninvasive evaluation of physiological and pathological function in living subjects. Recent progress in nuclear medical imaging modalities enables the clear visualization of the organs of small rodents. Thus, translational research using nuclear medical imaging in transgenic mice has become possible and helps to elucidate human disease pathology. However, imaging of α4β2 nAChRs in the mouse brain has not yet been performed. The purpose of this study was to assess the feasibility of single-photon emission computed tomography (SPECT) with 5-[(123)I]iodo-3-[2(S)-azetidinylmethoxy]pyridine ([(123)I]5IA) for evaluating α4β2 nAChR availability in the mouse brain. METHODS: A 60-min dynamic SPECT imaging session of α4β2 nAChRs in the mouse brain was performed. The regional distribution of radioactivity in the SPECT images was compared to the density of α4β2 nAChRs measured in an identical mouse. Alteration of nAChR density in the brains of Tg2576 mice was also evaluated. RESULTS: The mouse brain was clearly visualized by [(123)I]5IA-SPECT and probe accumulation was significantly inhibited by pretreatment with (-)-nicotine. The regional distribution of radioactivity in SPECT images showed a significant positive correlation with α4β2 nAChR density measured in an identical mouse brain. Moreover, [(123)I]5IA-SPECT was able to detect the up-regulation of α4β2 nAChRs in the brains of Tg2576 transgenic mice. CONCLUSIONS: [(123)I]5IA-SPECT imaging would be a promising tool for evaluating α4β2 nAChR availability in the mouse brain and may be useful in translational research focused on nAChR-related diseases

    How to evaluate science problem solving in a computerized learning environment? Construction of an analyzing scheme

    Get PDF
    Περιέχει το πλήρες κείμενοThis paper describes the construction of a ‘computerized science problem solving’ scheme, which enables analysis and evaluation of the effectiveness of science problem-solving by junior high-school students working in a computerized learning environment. The scheme was based on observations of 187 students as they solved qualitative science problems taken from a specific computerized learning environment. Students were also interviewed before and after the problem solving. The scheme is presented on two levels. The large-scale comprises 11 main categories, each sub-divided into sub-categories to yield the detailed-level. The sub-categories were based on a repertoire of activities found in the observation protocols, and were approved by external judgement and a validation process. The detailed-level scheme enables evaluation and statistical analysis of the participants' problem-solving effectiveness, providing substantial evidence for the construct validity of the scheme, and demonstrating its potential as a valid analyzing and evaluative tool for computerized science problem solving

    Increased [¹⁸F]FMISO accumulation under hypoxia by multidrug-resistant protein 1 inhibitors

    Get PDF
    BACKGROUND: [¹⁸F]Fluoromisonidazole ([¹⁸F]FMISO) is a PET imaging probe widely used for the detection of hypoxia. We previously reported that [¹⁸F]FMISO is metabolized to the glutathione conjugate of the reduced form in hypoxic cells. In addition, we found that the [¹⁸F]FMISO uptake level varied depending on the cellular glutathione conjugation and excretion ability such as enzyme activity of glutathione-S-transferase and expression levels of multidrug resistance-associated protein 1 (MRP1, an efflux transporter), in addition to the cellular hypoxic state. In this study, we evaluated whether MRP1 activity affected [¹⁸F]FMISO PET imaging. METHODS: FaDu human pharyngeal squamous cell carcinoma cells were pretreated with MRP1 inhibitors (cyclosporine A, lapatinib, or MK-571) for 1 h, incubated with [¹⁸F]FMISO for 4 h under hypoxia, and their radioactivity was then measured. FaDu tumor-bearing mice were intravenously injected with [¹⁸F]FMISO, and PET/CT images were acquired at 4 h post-injection (1st PET scan). Two days later, the same mice were pretreated with MRP1 inhibitors (cyclosporine A, lapatinib, or MK-571) for 1 h, and PET/CT images were acquired (2nd PET scan). RESULTS: FaDu cells pretreated with MRP1 inhibitors exhibited significantly higher radioactivity than those without inhibitor treatment (cyclosporine A: 6.91 ± 0.27, lapatinib: 10.03 ± 0.47, MK-571: 10.15 ± 0.44%dose/mg protein, p < 0.01). In the in vivo PET study, the SUVmean ratio in tumors [calculated as after treatment (2nd PET scan)/before treatment of MRP1 inhibitors (1st PET scan)] of the mice treated with MRP1 inhibitors was significantly higher than those of control mice (cyclosporine A: 2.6 ± 0.7, lapatinib: 2.2 ± 0.7, MK-571: 2.2 ± 0.7, control: 1.2 ± 0.2, p < 0.05). CONCLUSION: In this study, we revealed that MRP1 inhibitors increase [¹⁸F]FMISO accumulation in hypoxic cells. This suggests that [¹⁸F]FMISO-PET imaging is affected by MRP1 inhibitors independent of the hypoxic state

    Optimal threshold analysis of segmentation methods for identifying target customers

    Get PDF
    In CRM (Customer Relationship Management), the importance of a segmentation method for identifying good customers has been increasing. For evaluation of different segmentation methods, Accuracy often plays a key role. This indicator,however, cannot distinguish the following two types of errors: Type I Error for misidentifying a good customer as a bad customer and Type II Error for misinterpreting a bad customer as a good customer. In order to analyze the financial effectiveness of various segmentation methods, it is crucial to capture the distinction between Type I and Type II Errors since the former represents the opportunity cost while the latter results in the inefficient use of the promotion budget. The purpose of this paper is to overcome this pitfall by introducing two different indicators: Recall and Precision, which have been prevalent in the area of Information Retrieval. A mathematical model is developed for describing a generic segmentation method. Assuming that a promotion is addressed exclusively to the selected target customers, the financial effectiveness of the underlying segmentation method is expressed as a function of Recall and Precision. An optimization problem is then formulated so as to maximize the financial measure by finding the optimal threshold level in terms of the severeness for estimating the target set of good customers. By introducing a functional form which represents correctness and mistakes about the target set, the unique optimal solution is derived explicitly. Using real customer purchase data, the proposed approach is validated where Logistic Regression Model and Support Vector Machine are employed as segmentation methods. The methodology developed in this paper may provide a foundation for understanding and comparing the performance characteristics of various segmentation methods from a new perspective

    Rapid detection of hypoxia-inducible factor-1-active tumours: pretargeted imaging with a protein degrading in a mechanism similar to hypoxia-inducible factor-1alpha

    Get PDF
    PURPOSE: Hypoxia-inducible factor-1 (HIF-1) plays an important role in malignant tumour progression. For the imaging of HIF-1-active tumours, we previously developed a protein, POS, which is effectively delivered to and selectively stabilized in HIF-1-active cells, and a radioiodinated biotin derivative, (3-(123)I-iodobenzoyl)norbiotinamide ((123)I-IBB), which can bind to the streptavidin moiety of POS. In this study, we aimed to investigate the feasibility of the pretargeting method using POS and (123)I-IBB for rapid imaging of HIF-1-active tumours. METHODS: Tumour-implanted mice were pretargeted with POS. After 24 h, (125)I-IBB was administered and subsequently, the biodistribution of radioactivity was investigated at several time points. In vivo planar imaging, comparison between (125)I-IBB accumulation and HIF-1 transcriptional activity, and autoradiography were performed at 6 h after the administration of (125)I-IBB. The same sections that were used in autoradiographic analysis were subjected to HIF-1alpha immunohistochemistry. RESULTS: (125)I-IBB accumulation was observed in tumours of mice pretargeted with POS (1.6%ID/g at 6 h). This result is comparable to the data derived from (125)I-IBB-conjugated POS-treated mice (1.4%ID/g at 24 h). In vivo planar imaging provided clear tumour images. The tumoral accumulation of (125)I-IBB significantly correlated with HIF-1-dependent luciferase bioluminescence (R=0.84, p<0.01). The intratumoral distribution of (125)I-IBB was heterogeneous and was significantly correlated with HIF-1alpha-positive regions (R=0.58, p<0.0001). CONCLUSION: POS pretargeting with (123)I-IBB is a useful technique in the rapid imaging and detection of HIF-1-active regions in tumours
    corecore