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Abstract

In CRM (Customer Relationship Management), the importance of a segmen-
tation method for identifying good customers has been increasing. For evaluation
of different segmentation methods, Accuracy often plays a key role. This indica-
tor, however, cannot distinguish the following two types of errors: Type I Error
for misidentifying a good customer as a bad customer and Type II Error for mis-
interpreting a bad customer as a good customer. In order to analyze the financial
effectiveness of various segmentation methods, it is crucial to capture the distinction
between Type I and Type II Errors since the former represents the opportunity cost
while the latter results in the inefficient use of the promotion budget. The purpose
of this paper is to overcome this pitfall by introducing two different indicators: Re-
call and Precision, which have been prevalent in the area of Information Retrieval.
A mathematical model is developed for describing a generic segmentation method.
Assuming that a promotion is addressed exclusively to the selected target customers,
the financial effectiveness of the underlying segmentation method is expressed as a
function of Recall and Precision. An optimization problem is then formulated so as
to maximize the financial measure by finding the optimal threshold level in terms
of the severeness for estimating the target set of good customers. By introducing a
functional form which represents correctness and mistakes about the target set, the
unique optimal solution is derived explicitly. Using real customer purchase data,
the proposed approach is validated where Logistic Regression Model and Support
Vector Machine are employed as segmentation methods. The methodology devel-
oped in this paper may provide a foundation for understanding and comparing the
performance characteristics of various segmentation methods from a new perspec-
tive.

Keywords: CRM, Identifying target customers, Segmentation method, Optimal
threshold level, Recall, Precision

0 Introduction

During the past decade, the Internet has impacted the way businesses are con-
ducted across all industries, where emerging new business models collectively constitute
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e-business. Accordingly, marketing has been going through the Internet revolution with
a thrust of e-marketing. Before the Internet, the mass marketing through TV, newspa-
pers, radio and other media was directed one way from the media to customers, while the
one-to-one marketing was laborious, time-consuming and costly, and was conducted only
in a limited way using hearing via telephones, interviews at exits of stores, and the like.
One of the most significant features of e-marketing is that the mass marketing and the
one-to-one marketing can be done simultaneously with little cost and high speed.
Along this new trend, CRM (Customer Relationship Management) has become in-

creasingly important, where a corporation and its customers constantly engage themselves
in two way communications and exchange information valuable to each other. Through
such practices, customer profiles are captured and purchase data are accumulated in al-
most real time. Consequently, customer databases of huge magnitude are created and
processed for understanding the market better and implementing effective marketing
strategies. In this regard, segmentation of potentially profitable customers, whom we
call good customers, becomes significantly important. Through ranking tools such as
RFM (Recency, Frequency, Monetary) Analysis and Cross Analysis, customers are classi-
fied based on their past purchase behaviors. The target set consisting of potentially good
customers is then identified, to whom concentrated promotional efforts may be applied so
as to keep such customers loyal and increase the profit.
For this purpose, a variety of segmentation methods can be found, including Deci-

sion Tree and Neural Network prevalent in data mining, Discriminant Analysis and LRM
(Logistic Regression Model) based on statistical analysis, and SVM (Support Vector Ma-
chine) which has recently attracted attention of many researchers and practitioners in
such areas as machine learning and medical sciences. Because of availability of many
segmentation methods, it is desirable to establish a methodological approach for under-
standing and comparing the performance characteristics of such methods. Traditionally,
the key criterion has been Accuracy which measures the ratio of correctly identified good
or bad customers. Accuracy, however, fails to capture separately two types of errors:
Type I Error for misidentifying good customers as bad customers and Type II Error for
misunderstanding bad customers as good customers. Assuming that a promotional cam-
paign is addressed exclusively to the estimated good customers, the former represents
some opportunity loss while the latter results in the inefficient use of the campaign bud-
get. Accordingly, it is important to incorporate the distinction between the two types
of errors in evaluating the financial effectiveness of segmentation methods for marketing
campaign.
The purpose of this paper is to achieve this objective by introducing two performance

measures called Recall and Precision which have been prevalent in the field of Information
Retrieval. Recall is the ratio of the good customers who were included in the target
set, while Precision is the ratio of the target customers who actually turned out to be
good customers. Utilizing the two performance measures, a financial measure is then
established, which enables one to assess the trade-off between the opportunity loss and the
ineffective use of the campaign budget mentioned above. This trade-off is parameterized
by specifying a threshold level concerning the severeness for estimating good customers.
Accordingly, given a segmentation method, an optimization problem can be formulated
so as to maximize the financial measure by finding the optimal threshold level.
In general, this optimization problem cannot be solved since it involves the magnitudes

of Type I Error and Type II Error represented by Recall and Precision, which are unknown
until the purchasing records of the customers in the next future period become available.
This difficulty is overcome by introducing a functional structure with two parameters
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α and β which represents correctness and mistakes in estimating the target set. Recall
and Precision can then be expressed mathematically in terms of α and β, which in turn
enables one to obtain the unique optimal solution in a closed form. Given a segmentation
method, the two parameters can be estimated based on the past data available now, and
consequently the optimal threshold level can be specified. The approach proposed in
this paper may provide a foundation for understanding and comparing the performance
characteristics of various segmentation methods from a new perspective.
The structure of this paper is as follows. In Section 1, a mathematical model is

introduced for describing a general structure of segmentation methods. Utilizing two per-
formance measures, Recall and Precision, a financial measure is established in Section 2.
By evaluating the trade-off between the opportunity loss and the ineffective use of the
campaign budget, an optimization problem is formulated so as to maximize the financial
measure by finding the optimal threshold level. The optimal solution structure is dis-
cussed for some simple cases. Section 3 deals with development of a functional structure
for representing correctness and mistakes in estimating the target set. The unique optimal
threshold level is explicitly derived in terms of two parameters involved in the functional
structure. In Section 4, the proposed approach is validated using real customer purchase
data where LRM and SVM are employed as segmentation methods. Numerical results
reveal that the use of the optimal threshold level outperforms the use of the default values
in a consistent manner. It is also found that LRM is superior to SVM for the real purchase
data employed in this paper. Finally, some concluding remarks are given in Section 5.

1 General Structure of Segmentation Methods

We consider a set of N customers CS = {c1, . . . , cN}. Associated with each coustomer
ci is the profile vector xi, typically describing ci’s basic information and his/her past
purchasing behavior. The domain of the profile vectors is denoted by Ω, i.e. xi ∈ Ω, 1 ≤
i ≤ N . According to a prespecified criterion, we suppose that a set of good customers will
be determined by their purchasing outcome in the next future period. More specifically,
let D∗ : CS → {−1, 1} be a mapping describing this separation with

CS = B ∪G(1.1)

where

B = {ci : D∗(ci) = −1}; G = {ci : D∗(ci) = 1}.(1.2)

Here B and G denote the set of bad customers and the set of good customers respectively.
For notational convenience, we define

XB = |B|; XG = |G|,(1.3)

where the cardinality of a set A is denoted by |A|. It should be noted that B and G
will be realized only upon completion of the next future period. Accordingly, at the
present time, of interest is to develop a segmentation method which would attempt to
identify those customers in G by estimating customers’ future purchasing behavior based
on xi, 1 ≤ i ≤ N .
Let a mapping D : Ω→ [0, 1) be such that, for z ∈ [0, 1],

CS = B(z) ∪G(z)(1.4)
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with

B(z) = {ci : D(xi) < z}; G(z) = {ci : D(xi) ≥ z}.(1.5)

It should be noted that(
B(0) = ∅; B(1) = CS; z1 < z2 ⇒ B(z1) ⊂ B(z2).
G(0) = CS; G(1) = ∅; z1 < z2 ⇒ G(z1) ⊃ G(z2).

(1.6)

The mapping D describes a segmentation method, where those customers estimated to
be in G are identified as G(z) by calculating the value D(xi) and comparing it with
z, 1 ≤ i ≤ N . We call G(z) the target set given a threshold level z ∈ [0, 1].
In general, the target set G(z) of the estimated good customers and the set G of the

realized good customers may not necessarily coincide with each other. In order to capture
such possible differences, we now introduce the four cell functions as below:

xBB(z) = |B(z) ∩ B|; xBG(z) = |B(z) ∩G|;
xGB(z) = |G(z) ∩ B|; xGG(z) = |G(z) ∩G|.

(1.7)

The cell functions in (1.7) constitute the confusion matrix, the term often employed in
the field of data mining, see e.g. Berry and Linoff [2]. The confusion matrix is given
below in Table 1.1.

Table 1.1: Confusion Matrix

Realization
B G Total

Pre- B(z) xBB(z) xBG(z) XB(z)
diction G(z) xGB(z) xGG(z) XG(z)

Total XB XG N

Here, one has

xBB(z) + xGB(z) = XB; xBG(z) + xGG(z) = XG;

xBB(z) + xBG(z) = XB(z); xGB(z) + xGG(z) = XG(z)
(1.8)

and

XB +XG = XB(z) +XG(z) = N.(1.9)

From (1.6) and (1.7), xij(z), i, j ∈ {B,G} should satisfy the following properties.
Both xBB(z) and xBG(z) are nondecreasing in z and(1.10)

lim
z→0+

xBB(z) = 0, lim
z→1−

xBB(z) = XB,

lim
z→0+

xBG(z) = 0, lim
z→1−

xBG(z) = XG.

Both xGB(z) and xGG(z) are nonincreasing in z and(1.11)

lim
z→0+

xGB(z) = XB, lim
z→1−

xGB(z) = 0,

lim
z→0+

xGG(z) = XG, lim
z→1−

xGG(z) = 0.
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Traditionally, the performance of various segmentation methods has been evaluated
by the overall accuracy

A(z) =
xBB(z) + xGG(z)

N
.(1.12)

This approach often ignores the distinction between the following two types of errors: to
misidentify good customers as non-target customers (Type I Error captured by xBG(z))
and to misidentify bad customers as target customers (Type II Error corresponding to
xGB(z)). When a marketing campaign is addressed to those in the target set G(z), Type
I Error represents some opportunity loss while Type II Error results in the inefficient
use of the campaign budget. Hence, the two types of errors have different financial
implications, and accordingly it is important to distinguish Type I Error from Type II
Error in managerial decision making. In order to reflect the difference between the two
types of errors explicitly in our analysis, we introduce two performance measures, Recall
R(z) and Precision P (z), defined by

R(z) =
xGG(z)

XG
; P (z) =

xGG(z)

XG(z)
.(1.13)

These performance measures R(z) and P (z) are prevalent in the field of Information
Retrieval, see e.g. Rijsbergen [5]. We note that Recall R(z) is the ratio of the good
customers who were included in the target set, while Precision P (z) is the ratio of the
target customers who actually turned out to be good customers.
From (1.11) and (1.13), one sees that

R(z) =
xGG(z)

XG
is nonincreasing in z ∈ [0, 1](1.14)

with R(0) = 1 and R(1) = 0

and

P (z) =
xGG(z)

XG(z)
=

1

1 + rG(z)
; rG(z) =

xGB(z)

xGG(z)
with P (0) = λ(1.15)

where

λ =
XG

N
.(1.16)

The function P (z) at z = 1 is not defined since G(1) = ∅ and consequently XG(1) = 0. Its
limiting value P (1−) and monotonicity depend on the behavior of rG(z). More specifically,
one has

P (z) is nondecreasing in z if rG(z) is nonincreasing in z(1.17)

and P (1−) =
1

1 + rG(1−)
.

From (1.13), the following relationship exists between R(z) and P (z).

R(z)

P (z)
− XG(z)

XG
= 0.(1.18)
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The next proposition then holds:

Proposition 1.1 Let λ be as in (1.16). Then

P (z) ≥ λR(z) for all z ∈ [0, 1).(1.19)

Proof One sees from (1.18) that R(z)/P (z) = XG(z)/XG which is nonincreasing from
(1.8) and (1.11). Hence it follows from (1.14) and (1.15) that for all z ∈ [0, 1),

R(0)

P (0)
=
1

λ
≥ R(z)
P (z)

,

proving the proposition.

In Alvarez [1], it was shown that the following relationship exists between A(z), R(z)
and P (z)

A(z) =
1

N

½
XB +XGR(z)

µ
2− 1

P (z)

¶¾
,(1.20)

which can be obtained from (1.8), (1.9), (1.12) and (1.13). In this paper, the emphasis
will be on the role of R(z) and P (z) in assessing the financial impact of the marketing
campaign and analyzing the optimal threshold level z∗ for a given segmentation method.

2 Impact of Segmentation Methods on Financial Ef-

fectiveness of Marketing Efforts

Given a segmentation method and a threshold level z ∈ [0, 1] discussed in the previous
section, we consider a marketing strategy where the promotional efforts are concentrated
on the target customers in G(z) exclusively and not applied to those in B(z). Of interest
is to analyze the impact of the choice of a segmentation method and z ∈ [0, 1] on financial
effectiveness of the marketing strategy.
Let θB be the expected revenue from each of those customers in B during the next fu-

ture period. It is assumed that, under the influence of the promotional efforts, a customer
in B increases his/her expenditure by a factor of (1 + ηB) where ηB ∈ [0,∞). θG and ηG
are defined similarly. Clearly, those in G purchase more than those in B. It is also likely
that the promotional efforts yield that the resulting incremental revenue for those in G is
greater than that for those in B. Accordingly, throughout the paper, we assume that:

θB < θG and θBηB < θGηG.(2.1)

The cost per customer for the promotional efforts is denoted by ν > 0. The expected
total revenue with the promotional efforts is then given by

V (z) = θBxBB(z) + {θB(1 + ηB)− ν}xGB(z)
+ θGxBG(z) + {θG(1 + ηG)− ν}xGG(z).

(2.2)

We note that, with ηB = ηG = ν = 0, V (z) is the expected total revenue without the
promotional efforts. Consequently, the financial effectiveness of the promotional efforts
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can be measured by the difference between V (z) with ηB, ηG ≥ 0, ν > 0 and V (z) with
ηB = ηG = ν = 0, i.e.,

∆V (z) = (θBηB − ν)xGB(z) + (θGηG − ν)xGG(z).(2.3)

From (1.8) and (1.11), Equation (2.3) can be rewritten in terms of Recall R(z) and
Precision P (z) as

∆V (z) = XGR(z)

µ
γB
1− P (z)
P (z)

+ γG

¶
(2.4)

where

γB = θBηB − ν and γG = θGηG − ν.(2.5)

One sees from (2.1) and (2.5) that

γB < γG.(2.6)

Given a segmentation method, we are then interested in the following maximization prob-
lem for determing an optimal threshold level z∗ ∈ [0, 1]:

Problem 2.1 Find z∗ ∈ [0, 1] satisfying

∆V (z∗) = max
0≤z≤1

·
∆V (z) = XGR(z)

µ
γB
1− P (z)
P (z)

+ γG

¶¸
.

While R(z) and P (z) are related to each other as given in (1.18), it is worthwhile to
explore the structure of ∆V as a function of R and P by suppressing the variable z, as
we will see. For notational convenience, we define

F (R,P ) =
∆V (R,P )

XG
= R

µ
γB
1− P
P

+ γG

¶
(2.7)

where R,P ∈ [0, 1]. Let F (R,P ) = K > 0. Substituting this into (2.7) and solving for P
as a function of R, one finds that

P (R) = − hR

R − g(2.8)

where

g =
K

γG − γB
and h =

γB
γG − γB

.(2.9)

It then follows that

d

dR
P (R) =

gh

(R− g)2 ,
µ
d

dR

¶2
P (R) = − 2gh

(R − g)3 .(2.10)

From (2.10), structural properties of P (R) can be characterized by considering the sign
of γB and γG. We first note that γG cannot be negative for F (R,P ) = K > 0 from (2.6)
and (2.7). Accordingly, only the following two cases should be considered.(

Case I: γB < 0 < γG,

Case II: 0 < γB < γG.
(2.11)
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For Case I, one has h < 0 < g so that, from (2.10), P (R) is strictly decreasing, and
is strictly concave for R < g and strictly convex for R > g. However the former case
results in P (R) < 0 from (2.8) and should be discarded. In summary, one has P (R) as in
Figure 2.1. In Case II, both g and h are positive, and one has R < g because otherwise
P (R) becomes negative from (2.8). It then follows from (2.10) that P (R) is strictly
increasing and is strictly convex, as depicted in Figure 2.2. Contours of F (R,P ) for the
two cases are exhibited in Figures 2.3 and 2.4, where the arrow indicates the increasing
direction. It should be noted that Problem 2.1 can be solved by plotting (R(z), P (z)) for
z ∈ [0, 1] as determined by (1.18) and then finding the point crossing with the highest
contour.

Figure 2.1: F (R,P ) = K for Case I Figure 2.2: F (R,P ) = K for Case II

Figure 2.3: Contours of F for Case I Figure 2.4: Contours of F for Case II
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For Case II, one has 0 < γB < γG from (2.11). This means that the marketing
campaign is effective for not only good customers in G but also bad customers in B.
Accordingly it makes sense to target the whole customers by setting z = 0, G(z) = CS
and B(z) = ∅. This point may be observed graphically as shown in Figure 2.5. Here,
from Proposition 1.1, (R(z), P (z)) should lie above the linear function P = λR as z
moves from 0 to 1 with (R(0), P (0)) = (1,λ) and (R(1−), P (1−)) = (0, 1

1+rG(1−)
). Since

the contours of ∆V (R,P ) = K, K > 0, are as in Figure 2.4 for Case II, the maximum
value of ∆V (R,P ) is attained at (R∗, P ∗) = (1,λ). More formally, one has the following
theorem.

Figure 2.5: Optimal Structure for Case II

Theorem 2.2 For Case II of (2.11), Problem 2.1 has an optimal solution z∗ = 0 with
(R∗, P ∗) = (1,λ). This optimal solution is unique when either xGB(z) or xGG(z) in (1.7)
is strictly decreasing.

Proof From (1.11), both xGB(z) and xGG(z) are noninreasing so that xGB(0) ≥ xGB(z)
and xGG(0) ≥ xGG(z) for all z ∈ [0, 1]. It then follows from (2.3) and (2.5) that ∆V (0)−
∆V (z) = γB(xGB(0) − xGB(z)) + γG(xGG(0) − xGG(z)) ≥ 0 since 0 < γB < γG for Case
II. Clearly this inequality is strict when either xGB(z) or xGG(z) is strictly decreasing,
completing the proof.

For Case I of (2.11), one has γB < 0 < γG. This means that the positive returns
of the promotional efforts from good customers in G are offset, to some extent, by the
negative returns from bad customers in B, and the situation is more complicated. Since
R(z) and P (z) cannot be determined until the purchasing records of all customers during
the next future period become available, Problem 2.1 cannot be mathematically pursued
further for Case I. In subsequent sections, we overcome this difficulty and analyze the
above trade-off phenomenon by assuming certain functional forms of the cell functions.
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3 Estimating Structure of Cell Functions and Opti-

mal Threshold Level

In this section, we introduce a model where the structure of the cell functions xij(z), i, j ∈
{B,G} in (1.7) is estimated so as to satisfy the conditions in (1.10) and (1.11). The model
enables one to solve Problem 2.1 for Case I explicitly, yielding the unique optimal thresh-
old level z∗. The usefulness of this approach will be validated in Section 4, where real
customer purchase data are analyzed using LRM and SVM as segmentation methods.
While the cell functions xij(z) take only discrete values, throughout this paper, we

treat them as continuous functions in z ∈ [0, 1] for analytical simplicity. Consequently
both R(z) and P (z) are also continuous. This approximation is reasonable when XG and
XG(z) are relatively large so that their reciprocals are small, say 10

−3. Clearly typical
market data satisfy such conditions.
For z ∈ [0, 1], we estimate the four cell functions as

xBB(z) = XB(1− e−α z
1−z ), xBG(z) = XG(1− e−β z

1−z ),

xGB(z) = XB e
−α z

1−z , xGG(z) = XG e
−β z

1−z
(3.1)

where α,β > 0. It should be noted that all the conditions specified in (1.10) and (1.11) are
satisfied by (3.1). In particular, the target customers are narrowed down more and more as
z → 1−. Accordingly both xGB(z) and xGG(z) decrease to 0 as z → 1−. If an underlying
segmentation method is trustworthy to some extent, it is then natural to assume that
xGB(z) decreases to 0 faster than xGG(z) as z → 1−, i.e. rG(z) = XB

XG
e−(α−β)

z
1−z → 0 as

z → 1−. Consequently we assume that α > β > 0 and hence

c =
α

β
> 1.(3.2)

From (1.13) and (3.1), one sees that Recall R(z) can be written as

R(z) = e−β
z

1−z(3.3)

or equivalently

z

1− z = −
1

β
logR(z).(3.4)

For Precision P (z), one sees from (1.18), (3.1) and (3.3) that

P (z) = R(z)
XG
XG(z)

= R(z)
1

XB
XG
e−α

z
1−z + R(z)

.

Substituting (3.4) into the above equation, it then follows that

P (z) =
1

1 + w(λ)R(z)c−1
(3.5)

where λ is as given in (1.16) and w(x) is defined by

w(x) =
1− x
x

.(3.6)
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Given a segmentation method, the assumed structure of the cell functions in (3.1)
enables one to restate Problem 2.1 on a concrete basis for Case I. Furthermore, as we
will see, the problem can be solved explicitly, yielding the unique optimal threshold level
z∗ ∈ [0, 1] which maximizes the financial effectiveness of the marketing campaign.

Problem 3.1
1. Find (R∗, P ∗) ∈ [0, 1]× [0, 1] by solving

maximize F (R,P ) = R (γBw(P ) + γG)

subject to G(R,P ) = P {1 + w(λ)Rc−1}− 1 = 0
0 ≤ R,P ≤ 1.

(3.7)

2. Set

z∗ =
·
1− β

logR∗

¸−1
.

　

We recall that F (R,P ) is as given in (2.7), while G(R,P ) of (3.7) is derived from (3.5).
The value z∗ is then obtained from (3.4). For Case I of (2.11), Problem 3.1 can be solved
explicitly yielding the unique optimal solution. Two preliminary lemmas are needed. We
define Pconst(R) as a function of R ∈ [0, 1] obtained by solving the constraint G(R,P ) = 0
for P .

Lemma 3.2 Let

Pconst(R) =
£
1 + w(λ)Rc−1

¤−1
.(3.8)

Then, under (3.2), Pconst(R) is strictly decreasing in R ∈ [0, 1].

Proof One sees that

d

dR
Pconst(R) = −w(λ) (c− 1)Rc−2

£
1 + w(λ)Rc−1

¤−2
.

From (1.16) and (3.2), one has 1
λ
> 1 and c > 1 so that w(λ) > 0 and c − 1 > 0.

Consequently d
dR
Pconst(R) < 0 and the lemma follows.

Lemma 3.3 For case I of (2.11), let

P̃ =
−γB · c

γG − γB · c ; R̃ =
"
w(P̃ )

w(λ)

# 1
c−1

,(3.9)

where c is as given in (3.2). Then one has 0 < P̃ < 1 and 0 < R̃ < 1.

Proof Since γB < 0 < γG for Case I and c > 1 from (3.2), one has

0 < P̃ =
−γB · c

γG − γB · c =
c

c− γG
γB

< 1.

For R̃, one obseves from Lemma 3.2 that Pconst(R) is strictly decreasing in R and hence
Pconst(R) > λ = Pconst(1) for all R ∈ [0, 1). In particular, we note that P̃ = Pconst(R̃) > λ.
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Since w(x) is strictly decreasing in x ∈ [0, 1] from (3.6), one has w(P̃ ) < w(λ) and hence
w(P̃ )/w(λ) < 1. It then follows from (3.9) that 0 < R̃ < 1 since c > 1, completing the
proof.

We are now in a position to prove the following theorem.

Theorem 3.4 For Case I of (2.11), suppose the cell functions are as given in (3.1). Then
(R∗, P ∗, z∗) is optimal for Problem 3.1 if and only if

P ∗ = − γB · c
γG − γB · c ; R

∗ =
·
w(P ∗)
w(λ)

¸ 1
c−1
; and

z∗ =
·
1− β

logR∗

¸−1
.

(3.10)

Proof Suppose (R̂, P̂ , ẑ) is an optimal solution of Problem 3.1. Let L(R,P, ξ) be the
Lagrangian function defined by

L(R,P, ξ) = F (R,P ) + ξG(R,P ).(3.11)

Then (R̂, P̂ ) should satisfy the first order necessary conditions for optimality written as

∂L

∂R
= γB · w(P ) + γG + ξPw(λ) (c− 1)Rc−2 = 0,

∂L

∂P
= − R

P 2
γB + ξ

©
1 + w(λ)Rc−1

ª
= 0,

∂L

∂ξ
= G(R,P ) = 0.

(3.12)

After a little algebra, one then finds that

P̂ =
−γB · c

γG − γB · c = P
∗;

R̂ =

·
w(P ∗)
w(λ)

¸ 1
c−1
= R∗;

ξ∗ =
R∗γB
P ∗

.

(3.13)

From Lemma 3.3, one has 0 < R∗, P ∗ < 1 and z∗ is obtained from (3.4).
Conversely, let (R∗, P ∗) be as in (3.10). From Lemma 3.3, one has 0 < R∗, P ∗ < 1.

For notational convenience, we define

d =
γG
γB
< 0(3.14)

where d < 0 holds since γB < 0 < γG for Case I. From (3.10) and (3.14), one finds that

P ∗ = − γB · c
γG − γB · c =

c

c− d,(3.15)
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and hence

w(P ∗) =
1− P ∗
P ∗

=
1− c

c−d
c
c−d

=
−d
c
.(3.16)

Furthermore, from (3.8) with P = Pconst(R), one has

w(P ) =
1− P
P

= w(λ)Rc−1.(3.17)

We now show that, for F (R,P ) of (3.7),

F (R∗, P ∗)− F (R,P ) > 0 for all (R,P ) ∈ [0, 1]× [0, 1], R 6= R∗, P 6= P ∗.(3.18)

It can be readily seen from (3.7), (3.10) and (3.17) that

F (R∗, P ∗)− F (R,P ) = γB ·H(R)(3.19)

where

H(R) =

·
w(P ∗)
w(λ)

¸ 1
c−1©

w(P ∗) + d
ª− R©w(λ)Rc−1 + dª .(3.20)

Using (3.16), it then follows that

H(R) = −w(λ)Rc − dR + V ; V = −
· −d
cw(λ)

¸ 1
c−1
dw(c).(3.21)

We note that w(c) < 0 since c > 1 from (3.2) so that

H(0) = V < 0.(3.22)

One also sees that

∂

∂R
H(R) = −cw(λ)Rc−1 − d = 0 ⇔ R =

· −d
cw(λ)

¸ 1
c−1
= R∗(3.23)

where the last equality holds since w(P ∗) = −d
c
from (3.16). Furthermoreµ

∂

∂R

¶2
H(R) = −c(c− 1)w(λ)Rc−2 < 0.(3.24)

Hence H(R) is strictly concave in R with the global maxima attained at R∗. In addition,
from (3.17) and (3.21), one has

H(R∗) = −w(λ)R∗c − dR∗ − R∗dw(c)
= R∗

£−w(λ)R∗c−1 − d {1 + w(c)}¤
= R∗

·
w(P ∗)− d

c

¸
,

so that, from (3.16),

H(R∗) = 0.(3.25)

It then follows from (3.22),(3.23),(3.24) and (3.25) that H(R) < 0 for R ∈ [0, 1] with
R 6= R∗. Since γB < 0 for Case I, (3.18) holds true from (3.19), completing the proof.

Given a segmentation method, Theorem 3.4 enables one to set the optimal threshold
level so as to maximize the financial effectiveness of the promotional efforts. Then, of
interest is to examine the usefulness of this theorem by comparing the result using the
optimal threshold value with the result using the default threshold value of the given
segmentation method. In the next section, we demonstrate the validity of our approach
based on real customer purchase data.
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4 Model Validation Based on Real Customer Pur-

chase Data

In this section, we examine the validity of our approach discussed in Section 3 based on
real customer purchase data using LRM and SVM as segmentation methods. A succinct
summary of the two segmentation methods LRM and SVM is given in Appendix A for
the reader’s convenience.
We first describe the basic features of the real customer purchase data used for this

analysis.

• Basic data: purchasing records by category collected from several drugstores in
Japan with customer IDs

• Time period: July 2002-June 2003
• Number of categories: 96
• Number of customer IDs: 64,453
• Number of purchase incidences: 2,362,163
• Total sales in the period: about 1.56 billion yen

For validation purposes, the total period is decomposed into the following 4 periods:

• Period I: July-September, 2002

• Period II: October-December, 2002

• Period III: January-March, 2003

• Period IV: April-June, 2003

The data set for Period J is denoted by Data J , J =I, II, III, IV.
The validation procedure is summarized in Figure 4.1. Here, firstly, Data I is used to

identify 36 basic components. Considered are the basic customer profile components such
as sex and age, and the purchasing records related to RFM (Recency, Frequency, Mon-
etary) represented by the latest purchasing date, the purchasing frequency and the pur-
chasing amount, as well as grouping product categories and aggregating related records.
In addition, certain indices are formed using multiple components. The pair-wise correla-
tion analysis is then conducted among the 36 components, eliminating one component for
each pair with correlation coefficient greater than 0.76. As a result, 26 components are
selected to construct customer profile vectors xi(J), 1 ≤ i ≤ N, J = I, II, III, IV. We note
that any customer without purchasing records during Period J is excluded from analysis
of Period J . A brief description of these 26 components is given in Appendix B.
We next define the set of good customers GJ in Period J as follows.

Definition 4.1 (The set of good customers in Period J)
When customers are listed in descending order of their purchasing amount during Pe-
riod J , those within top π% constitute the set of good customers GJ in Period J . The
determinant variable of ci for Period J , denoted by yi(J), is then given as

yi(J) =

(
1 if ci ∈ GJ in Period J ,
−1 if ci ∈ BJ in Period J .

(4.1)
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Figure 4.1: Validation Procedure

For xi(I) and yi(II), each of the two segmentation methods can be applied, resulting
in BII(z) and GII(z) for z ∈ [0, 1]. More specifically, for LRM, the segmentation function
based on xi(I) and yi(II), denoted by DL:I,II, is given by

LRM: DL:I,II(xi(J)) = [1 + exp{−(b̂Txi(J) + b̂0)}]−1,(4.2)

where b̂ and b̂0 are obtained as shown in Appendix A.1. BJ(z) and GJ(z) are then
determined for J = II, III by applying (4.2) to (1.5). In this paper, Clementine 7.1 by
SPSS Inc. is employed for estimating parameter values, where all of 26 components given
in Appendix B are forced to be used. For SVM, the optimal separating hyperplane is
generated by determining the vector w∗ and the constant w∗0 together with the relaxation
vector ξ∗ where yi(II)g(xi(I)) ≥ 1−ξ∗i with g(x) = w∗Tx+w∗0, by following the procedure
specified in Appendix A.2. In turn, the segmentation function DS:I,II is obtained for
J = II, III as

SVM: DS:I,II(xi(J)) =
g(xi(J))− g(xmin(I))
g(xmax(I))− g(xmin(I))(4.3)

where g(xmax(I)) = max1≤i≤N [g(xi(I))] and g(xmin(I)) = min1≤i≤N [g(xi(I))]. It should be
noted that DS:I,II(xi(J)) may not belong to [0,1) for J = II, III. When the value exceeds 1,
we replace it by 1 − ² for sufficiently small ² > 0. If the value becomes negative, it is
redefined as 0. With these modifications, one has DS:I,II(xi(J)) ∈ [0, 1), and BJ(z) and
GJ(z) can be determined for J = II, III from (1.5). In this paper, SVMlight5.00 [4] with
parameter C = N/

PN
i=1 x

T
i xi by default is employed for constructing the segmentation

function. Nonlinear segmentation is discarded after pre-testing.
Based on BII(z) and GII(z) together with yi(III), the confusion matrix can be con-

structed for each z ∈ [0, 1]. By taking the values of z from 0 to 1 with a step size of
0.05, and using the cell funtion structure assumed in (3.1), the least square estimates
α̂III and β̂III can be obtained. These estimates, in turn, yield the optimal threshold level
z∗III via Theorem 3.4. Finally, in order to examine the financial impact of the optimal
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threshold level against nonoptimal threshold levels, the objective value ∆V (z∗III) based on
the confusion matrix generated by BIII(z

∗
III), GIII(z

∗
III) and yi(IV) is compared with ∆V (z)

calculated from the confusion matrix obtained by BIII(z), GIII(z) and yi(IV) where z = 0.5
as the default value for LRM and z = −g(xmin(I))/{g(xmax(I))− g(xmin(I))} for SVM.
Table 4.1 summarizes the least square estimates α̂III and β̂III for LRM and SVM with

π = 5, 10, 15, 20%. These estimates are calculated using the confusion matrix generated
from BII(z), GII(z) and yi(III). In Figures 4.2 and 4.3, the estimated cell functions are
compared with the actual numbers for LRM and SVM respectively where π = 10%. One
finds that the cell functions for SVM approximate the actual numbers extremely well.
With respect to LRM, both xBB(z) and xGB(z) are well approximated, while some dis-
crepancy can be observed for xBG(z) and xGG(z) for z not near 0, 0.5 or 1.0. Nevertheless,
the use of the optimal z∗ yields the substantial improvement over the use of the default
values as we see next.

Table 4.1: Least Square Estimates

LRM SVM

π α̂III β̂III α̂III β̂III

5% 34.67 1.89 23.02 4.38

10% 20.05 1.23 23.72 5.30

15% 12.46 1.14 19.22 5.46

20% 8.20 0.84 25.91 6.90

The expected revenues θB and θG from each of those in B and G respectively are
estimated from Data III and Data IV as shown in Table 4.2, where θB and θG based
on Data III are used to find the optimal threshold level z∗III while those estimated from
Data IV are employed to compute ∆V (z) for the actual validation. Computational ex-
periments are then conducted extensively covering a wide range of parameter values of
(ηB, ηG, ν) where ηB and ηG are the purchase increase factors of those in B and G re-
spectively, and ν is the cost per customer for the promotional efforts. It is found that
the use of the optimal z∗ uniformly outperforms the use of the default values by a factor
ranging from 1.5 to 2.8 for LRM and from 1.2 to 7.5 for SVM. It is also observed that
LRM is consistently superior to SVM for this data set. Figures 4.4 and 4.5 exhibit some
representative cases for LRM and SVM respectively.

Table 4.2: Expected Revenues (Unit: Yen)

Data III Data IV

π θB θG θB θG

5% 6,982.9 40,758.5 6,711.1 40,318.5

10% 6,066.4 32,121.1 5,817.4 31,554.8

15% 5,366.6 27,402.0 5,140.7 26,811.3

20% 4,787.5 24,207.8 4,584.5 23,617.7
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(a) xBB(z)

(b) xBG(z)

(c) xGB(z)

(d) xGG(z)

Figure 4.2: Cell Functions for LRM

(a) xBB(z)

(b) xBG(z)

(c) xGB(z)

(d) xGG(z)

Figure 4.3: Cell Functions for SVM
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(a) ηB = 0, ηG = 2, ν = 100 (Yen)

(b) ηB = 1, ηG = 5, ν = 250 (Yen)

(c) ηB = 2, ηG = 8, ν = 500 (Yen)

(d) ηB = 2, ηG = 10, ν = 500 (Yen)

Figure 4.4: ∆V for LRM (Unit: Million
yen)

(a) ηB = 0, ηG = 2, ν = 100 (Yen)

(b) ηB = 1, ηG = 5, ν = 250 (Yen)

(c) ηB = 2, ηG = 8, ν = 500 (Yen)

(d) ηB = 2, ηG = 10, ν = 500 (Yen)

Figure 4.5: ∆V for SVM (Unit: Million
yen)
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5 Concluding Remarks

Traditionally, the performance of segmentation methods has been evaluated by Accu-
racy, which fails to capture separately two types of errors: Type I Error for misidentifying
good customers as bad customers and Type II Error for misunderstanding bad customers
as good customers. Assuming that a promotional campaign is addressed exclusively to
the estimated good customers, the former represents some opportunity loss while the
latter results in the inefficient use of the campaign budget. Accordingly, it is important
to incorporate the distinction between the two types of errors in evaluating the financial
effectiveness of segmentation methods for marketing campaign. By achieving this objec-
tive, one may establish a foundation for understanding and comparing the performance
characteristics of various segmentation methods from a new perspective.
In order to reflect the effects of the two types of errors, this paper first develops a

mathematical model for describing a general structure of segmentation methods. Utiliz-
ing two performance measures, Recall and Precision, a financial measure is then estab-
lished, which enables one to assess the trade-off between the opportunity loss and the
ineffective use of the campaign budget mentioned above. This trade-off is parameterized
by specifying a threshold level concerning the severeness for estimating good customers.
Accordingly, given a segmentation method, an optimization problem can be formulated
so as to maximize the financial measure by finding the optimal threshold level.
In general, this optimization problem cannot be solved since it involves the magni-

tudes of Type I Error and Type II Error represented by Recall and Precision, which are
unknown until the purchasing records of the customers in the next future period become
available. This difficulty is overcome by introducing the structure of the four cell functions
characterized by two parameters α and β. Recall and Precision can then be expressed
mathematically in terms of α and β, which in turn enables one to obtain the unique opti-
mal solution in a closed form. Given a segmentation method, the two parameters can be
estimated based on the past data available now, and consequently the optimal threshold
level can be specified.
The validity of the above approach is tested using real customer purchase data where

LRM (Logistic Regression Model) and SVM (Support Vector Machine) are employed
as segmentation methods. Extensive numerical experiments reveal that the use of the
optimal threshold level uniformly outperforms the use of the default values for both LRM
and SVM. For this set of data, it is also found that LRM is superior to SVM.
Further extension of this research is in progress, including multi-layer targeting, differ-

ent functional forms for the four cell functions, endogenous responses to promotion and
additional tests for different sets of purchasing records. These results will be reported
elsewhere.
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Appendix A Segmentation Methods

We consider data points spread over three periods I, II and III. A set of data points
for Period J is denoted by xi(J) (i = 1, . . . , N). Let the two sets BJ and GJ represent
a segmentation of the entire set for Period J , e.g. GJ is a set of good customers defined
by top π% in the revenue ranking of Period J as in Definition 4.1 of this paper. Given
xi(J), it is known that either i ∈ BJ or i ∈ GJ in Period J . Let yi(J) ∈ {−1, 1} be
determinant variables defined by yi(J) = −1 if i ∈ BJ and yi(J) = 1 if i ∈ GJ in
Period J . A segmentation method is an algorithmic procedure based on xi(I) and yi(II).
The algorithmic procedure is then applied to xi(II), resulting in the estimate of yi(III).
The data set for Periods I and II constitutes the learning data, while the data set for
Periods II and III is called the test data.

A.1 LRM (Logistic Regression Model)

LRM is a statistical approach for segmentation of data points, where a functional value
is computed from the components of each data point and then compared with a threshold
level to see whether or not the underlying point ought to be selected. More specifically,
let xi(J) (i = 1, . . . , N) be a set of data points for Period J (J=I, II), and suppose that
yi(II) (i = 1, . . . , N) are known for Period II. Using these data, the problem is how to
predict the values of yi(III). In this regard, given xi = xi(II), the probability of occuring
yi(III) = 1, i.e. i ∈ GIII, is assumed to take a form

p(xi) = D(Z(xi)) =
exp(Z(xi))

1 + exp(Z(xi))
=

1

1 + exp(−Z(xi)) ,(A.1)

where Z(x) = bTx+ b0. From (A.1), it follows that

log
p(xi)

1− p(xi) = b
Txi + b0.(A.2)

In general, the maximum likelihood approach is employed to find the estimates b̂ and b̂0
using xi(I) and yi(II), i.e.

L(b̂, b̂0) = max
b,b0

"Y
i∈GII

p(xi(I))×
Y
i∈BII

{1− p(xi(I))}
#
.(A.3)

Given a threshold level z ∈ [0, 1], the segmentation set GIII(z) for Period III is then
obtained as

GIII(z) = {i : p̂(xi) = D(Ẑ(xi)) ≥ z},(A.4)

where Ẑ(x) = b̂
T
x + b̂0. In general, z = 0.5 is taken by default. The reader is refered to

Hastie, Tibshirani and Friedman [3] for further details.
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A.2 SVM (Support Vector Machine)

SVM is also a segmentation method and its function is similar to that of LRM.
The basic tool for SVM is a separating hyperplane of the form g(x) = wTx + w0. Let
f(x) = sign{g(x)} where sign{x} = 1 if x ≥ 0 and sign{x} = −1 otherwise. Given
xi = xi(I) and yi = yi(II), the first step is to find w

∗ and w∗0 satisfying

yi = f(xi) = sign{g(xi)}.(A.5)

In general, the existence of such w∗ and w∗0 is not guaranteed. In order to overcome this
difficulty, we introduce relaxation variables ξi ≥ 0 (i = 1, ..., N) and additional constraints
given by (

g(xi) ≥ 1− ξi if yi = 1, i.e. i ∈ GII,
g(xi) ≤ −1 + ξi if yi = −1, i.e. i ∈ BII.

(A.6)

Figure A.1 illustrates xi(I), BII, GII, and a separating hyperplaneH0 : g(x) = w
Tx+w0 =

0 together with a relaxation variable ξi > 0.
It is clear that the distance between the two hyperplanes H1 : g(x) = 1 and H2 :

g(x) = −1 can be obtained as 2/kwk. In SVM, it is desirable to maximize this distance
while some penalties imposed on positive relaxation variables are contained in some way.
Accordingly, the following optimization problem can be formulated so as to determine an
optimal separating hyperplane.

minimize
w,w0,ξ

1

2
kwk2 + C

NP
i=1

ξi

subject to ∀i, yi(wTxi + w0)− (1− ξi) ≥ 0
∀i, ξi ≥ 0.

(A.7)

Here, C represents the magnitude of penalties for positive relaxzation variables. Publicly
available software packages for SVM often employ C = N/

PN
i=1 x

T
i xi as a default value.

The primal problem of (A.7) has the dual problem given below:

maximize
α

αT1− 1
2
αTDα

subject to αTy = 0

0 ≤ α ≤ C1,
(A.8)

Figure A.1: Linear SVM

22



where 1 = [1, . . . , 1]T, D = yDX
TXyD with yD = diag{y1, . . . , yN}, X = [x1, . . . ,xN ]

and y = [y1, . . . , yN ]
T. As can be seen, the dual problem is a concave quadratic program-

ming problem which is much easier to solve than the primal problem.
Let (w∗, w∗0) and α

∗ be the optimal solution of the primal problem (A.7) and the dual
problem (A.8) respectively. One then finds that

w∗T = α∗TyDXT; w∗0 = yk −α∗TyDXTxk,(A.9)

where k is any index satisfying 0 < α∗k < C. Let g∗(x) = w∗Tx + w∗0 and define the
segmentation function f∗(x) = sign{g∗(x)}. It then follows that

GIII(z) = {i : f∗(xi(II)) = 1},(A.10)

where this case is treated as the case of default. As is shown in Section 4, a general case
for identifying good customers with a prespecified level z ∈ [0, 1] can be described by

GIII(z) = {i : D(xi(II)) ≥ z},(A.11)

where D is given in (4.3). A vector xi with α
∗
i > 0 is called a Support Vector. It is worth

noting that the segmentation function f∗(x) is contributed only by Support Vectors.
In some cases, it may be desirable to segmentize the data points by a nonlinear func-

tion. This becomes possible by introducing a Kernel functionK(xi,xj) = h(xi)
TµDh(xj),

where µD = diag{µ1, . . . , µM} with µi ≥ 0 and h : RL → RM is a nonlinear function.
Typically one has M much larger than L and the linear SVM approach can be applied in
RM which results in a nonlinear segmentation in RL. The reader is referred to Vapnik [6]
for further details.
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Appendix B Structure of Customer Profile Vectors

Table B.1: Components of Customer Profile Vector

Variable Contents
1 the latest purchase date
2 the second latest purchase date
3 the total number of purchase incidents
4 the total purchase amount (in Yen)
5 RFM rank
6 the average purchase amount per purchase
7 the average number of purchase items per purchase
8 the total number of purchase incidents during weekends and holi-

days
9 Variable 8 / Variable 3
10 Index for similarity to the purchase pattern of the whole customers
11 the total purchase amount of items in the top 2 categories in terms

of the total purchase amount of the whole customers
12 the number of categories purchased at least once in the top 2 cate-

gories within the period
13 the number of categories purchased at least once in Category A

within the period
14 the total purchase amount of the items in Category B
15 the total number of purchase items in Category B
16 the number of categories purchased at least once in Category B

within the period
17 the total purchase amount of the items in Category C
18 the number of categories purchased at least once in Category C

within the period
19 the customer’s decil value in Basic Cosmetics Category
20 the customer’s decil value in Make-up Cosmetics Category
21 the customer’s decil value in Non-Alcoholic Beverages Category
22 the customer’s decil value in Medicine for Sensory Organ and Skin

Category
23 the customer’s decil value in Supplementary Nutrition Category
24 the customer’s decil value in Sanitary Items Category
25 Gender
26 Age

Variables 1 and 2 are concerned with “Recency”, while Variables 3, 8 and 9 are related
to “Frequency”. “Monetary” is expressed by Variables 4 and 6. Variable 5 called “RFM
rank” is defined as the sum of the following three binary indices regarding the desirability
of the customer in terms of Recency, Frequency and Monetary.

R-desirability =

½
1 (Variable 1 ≤ 5)
0 (Variable 1 > 5)

F-desirability =

½
1 (Variable 3 ≥ 7)
0 (Variable 3 < 7)

M-desirability =

½
1 (Variable 4 belongs to the top 30%)
0 (else)

24



R-desirability and F-desirability are set in such a way that approximately 30% of the
whole customers would have the value of 1 in Period J , J =I, II, III, IV.
Variable 10 is computed by multiplying the ratio of the purchase amount in each cat-

egory against the total purchase amount of the customer by that of the whole customers,
and then summing the result over all categories expressed in %.
The top 2 categories for Variables 11 and 12 are Basic Cosmetics Category and Make-

up Cosmetics Category respectively throughout the four periods.
A, B and C Categories are determined based on ABC Analysis of the purchase amount

of the whole customers in each period where categories that amount to top 75% constitute
Category A, those contributing to the range between 75% and 90% are named Category B,
with the rest called Category C.
The decil value used for Variables 19 through 24 is defined as k/10 when the customer

belongs to the k-th decil of the specified category among the whole customers for each
period with k =0, 1, 2, . . . , 9 where decil 0 is the best. Those customers who do not
purchase any item in the specified category are assigned the decil value of 1.0.
In this paper, SVMlight [4] by Joachims is used for implementing SVM. This soft-

ware package requires the domain of customer-profile vectors to be approximately the
L-dimensional cubic with the left lower corner at the origin. In order to meet this re-
quirement, those variables whose domain is not [0, 1] are scaled in the following manner.
For J = I, II, III, IV, let V ∗i:m(J) be the value of Variable m for customer ci in Period J
after scaling. Vi:m(J) is the corresponding value before scaling.

V ∗i:m(J) =
Vi:m(J)−minci∈CS Vi:m(I)

maxci∈CS Vi:m(I)−minci∈CS Vi:m(I)
.

Consequently, V ∗i:m(J) are likely between 0 and 1 although it may become negative for
J 6= I. This scaling is expected to contain the effect of outliers.
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