4 research outputs found

    Damage detection in concrete gravity dams using signal processing algorithms based on earthquake vibrations

    Get PDF
    In structural engineering, damage detection in concrete gravity dams (CGDS) is a practical problem. Dam destruction can have severe financial consequences and may even lead to fatalities. Therefore, structural health monitoring in advance is crucial. In this regard, a well-known CGD, namely the Pine Flat Dam, has been chosen for the Finite Element Modeling. In this paper, damage is induced in the dam neck through elasticity modulus reduction by 40 % and 80 %. In addition, after applying Northridge earthquake, the acceleration in structure nodes for intact and damaged cases are recorded in vector formats. Using various methods, such as Discrete-time Fourier Transform (DTFT), Wavelet transform and Wiener transform, the differences between these two signals are investigated. The standard deviation (S.D.) of variations is chosen as the performance metric and is applied to the signal amplitude between intact and damage observations/signals. The reason why several signal processing algorithms are used is finding an approach which shows more clearly the differences caused by the destruction. This is evaluated via S.D. values for different algorithms. The results confirm the superiority of DTFT over other given algorithms. DTFT has a negligible outperformance (approximately zero dB) with respect to the Wavelet transform in both the crest and the lower nodes of the dam. This rate for DTFT and Wavelet is 10dB higher than that of Wiener and 35 dB in comparison with the simple amplitude difference. Moreover, the detection thresholds for the given methods are compared, and it is verified that the DTFT and Wavelet indicate the best performance

    Damage detection in concrete gravity dams using signal processing algorithms based on earthquake vibrations

    Get PDF
    In structural engineering, damage detection in concrete gravity dams (CGDS) is a practical problem. Dam destruction can have severe financial consequences and may even lead to fatalities. Therefore, structural health monitoring in advance is crucial. In this regard, a well-known CGD, namely the Pine Flat Dam, has been chosen for the Finite Element Modeling. In this paper, damage is induced in the dam neck through elasticity modulus reduction by 40 % and 80 %. In addition, after applying Northridge earthquake, the acceleration in structure nodes for intact and damaged cases are recorded in vector formats. Using various methods, such as Discrete-time Fourier Transform (DTFT), Wavelet transform and Wiener transform, the differences between these two signals are investigated. The standard deviation (S.D.) of variations is chosen as the performance metric and is applied to the signal amplitude between intact and damage observations/signals. The reason why several signal processing algorithms are used is finding an approach which shows more clearly the differences caused by the destruction. This is evaluated via S.D. values for different algorithms. The results confirm the superiority of DTFT over other given algorithms. DTFT has a negligible outperformance (approximately zero dB) with respect to the Wavelet transform in both the crest and the lower nodes of the dam. This rate for DTFT and Wavelet is 10dB higher than that of Wiener and 35 dB in comparison with the simple amplitude difference. Moreover, the detection thresholds for the given methods are compared, and it is verified that the DTFT and Wavelet indicate the best performance

    SURVEY OF MATLAB EFFICIENCY IN DAMAGE DETECTION OF CONCRETE GRAVITY IN CONCRETE GRAVITY DAMS

    No full text
    Detection of damage in concrete gravity dams (CGDs) is one of the challenges that need to be overcome since dam failure may lead to irreversible consequences. This research aims to detect structural damage within CGDs by wavelet analysis. From a structural point of view, stiffness is an important factor in the dynamic behaviour of concrete gravity dam systems. Any sudden change in the stiffness leads to alteration in the dynamic response of the structures. The proposed analysis of such a condition will help to investigate the responses before and after the occurrence of any structural damage. The main contributions of this paper are to detect the existence of any damage in the dam structure and determine the damage location along the height of the dam. In order to achieve these purposes, three finite element models of the Pine Flat, Bluestone, and Folsom dams are chosen as case studies. These dams have been modelled for both intact and damaged states, and their geometrical, physical, and mechanical characteristics are defined by SAP2000 software. A series of modal analyses was performed to determine the frequencies and shapes of the structural motions. After reduction of the elasticity modulus by 20% and 50%, the Discrete Wavelet Transform (DWT) was applied to the difference between the intact and damaged observations. Then, the DWT outputs were analysed to get information about the existence of damage as well as its location in the dam structure. Overall, from the obtained results, the main finding of this study states that the location and severity of the structural damages have been efficiently detected according to the significant amplitude variations in DWT diagrams. ABSTRAK: Pengesanan kerosakan pada empangan graviti konkrit (CGDs) adalah salah satu cabaran yang perlu diatasi disebabkan kegagalan empangan yang boleh membawa kepada akibat buruk. Kajian ini bertujuan bagi mengesan kerosakan struktur dalam CGDs menggunakan analisis wavelet. Dari sudut pandang struktur, struktur yang kukuh adalah faktor penting dalam sifat dinamik sistem empangan graviti konkrit. Sebarang perubahan secara tiba-tiba pada struktur bangunan membawa kepada perubahan tindak balas dinamik struktur. Analisis yang dicadangkan terhadap keadaan ini membantu dalam memberi tindak balas sebelum dan selepas jika berlaku sebarang kerosakan struktur. Sumbangan utama kajian ini adalah bagi mengesan jika terdapat sebarang kerosakan pada struktur dalam empangan dan menentukan lokasi kerosakan sepanjang ketinggian empangan. Bagi mencapai matlamat ini, tiga model unsur terhingga daripada empangan Pine Flat, Bluestone dan Folsom telah dipilih sebagai kes kajian. Kesemua empangan ini dimodelkan bagi kedua-dua keadaan iaitu ketika baik dan rosak. Ciri geometri, fizikal dan ciri-ciri mekanikal juga telah ditakrif menggunakan perisian SAP2000. Satu siri model analisis telah dijalankan bagi menentukan frekuensi dan bentuk gerakan struktur. Selepas pengurangan modulus keanjalan sebanyak 20% dan 50%, Transformasi Wavelet Diskret (DWT) telah digunakan bagi mengesan perbezaan antara keadaan baik dan rosak. Kemudian, hasil dari DWT ini dianalisis bagi mendapatkan maklumat mengenai kewujudan kerosakan pada empangan dan juga lokasi kerosakan dalam struktur empangan. Secara keseluruhan, hasil kajian berjaya menentukan lokasi dan tahap kerosakan struktur dengan cekap mengikut variasi amplitud ketara dalam rajah DWT
    corecore