23 research outputs found

    Broadly tunable, high-power terahertz radiation up to 73 K from a stand-alone Bi2Sr2CaCu2O8+delta mesa

    Get PDF
    High-power, continuous, broadly tunable THz radiation from 0.29 to 1.06 THz, was obtained from the outer current-voltage characteristic (IVC) branch of a single stand-alone mesa of the high-transition temperature T-c superconductor Bi2Sr2CaCu2O8+delta. The particular metallic film structures placed both beneath and atop the mesas resulted in more efficient heat dissipation, higher allowed applied dc voltages, larger IVC loops, wider emission temperature ranges, and much broader emission frequency tunability than obtained previously

    Computed tomography image using sub-terahertz waves generated from a high-T-c superconducting intrinsic Josephson junction oscillator

    Get PDF
    A computed tomography (CT) imaging system using monochromatic sub-terahertz coherent electromagnetic waves generated from a device constructed from the intrinsic Josephson junctions in a single crystalline mesa structure of the high-T-c superconductor Bi2Sr2CaCu2O8+delta was developed and tested on three samples: Standing metallic rods supported by styrofoam, a dried plant (heart pea) containing seeds, and a plastic doll inside an egg shell. The images obtained strongly suggest that this CT imaging system may be useful for a variety of practical applications

    Influence of the local heating position on the terahertz emission power from high-T-c superconducting Bi2Sr2CaCu2O8+delta mesas

    Get PDF
    Simultaneous measurements of spectroscopic terahertz emissions from and SiC photoluminescent local temperature T(r) distributions of high transition temperature T-c superconducting Bi2Sr2CaCu2O8+delta rectangular mesa devices were made. A local region with T(r) \u3e T-c known as a hot spot can emerge with current bias changes. When the hot spot position was moved to a mesa end by locally heating the mesa surface with a laser beam, the intensity of the emission increased, but no changes to its frequency or line width were observed. These results suggest that higher power radiation is attainable by adjusting the hot spot position

    Dynamic control of proinflammatory cytokines Il-1β and Tnf-α by macrophages in zebrafish spinal cord regeneration

    Get PDF
    Spinal cord injury leads to a massive response of innate immune cells in non-regenerating mammals, but also in successfully regenerating zebrafish. However, the role of the immune response in successful regeneration is poorly defined. Here we show that inhibiting inflammation reduces and promoting it accelerates axonal regeneration in spinal-lesioned zebrafish larvae. Mutant analyses show that peripheral macrophages, but not neutrophils or microglia, are necessary for repair. Macrophage-less irf8 mutants show prolonged inflammation with elevated levels of Tnf-α and Il-1β. Inhibiting Tnf-α does not rescue axonal growth in irf8 mutants, but impairs it in wildtype animals, indicating a pro-regenerative role of Tnf-α. In contrast, decreasing Il-1β levels or number of Il-1β+ neutrophils rescue functional regeneration in irf8 mutants. However, during early regeneration, interference with Il-1β function impairs regeneration in irf8 and wildtype animals. Hence, inflammation is dynamically controlled by macrophages to promote functional spinal cord regeneration in zebrafish

    Blockade of interleukin-6 signaling inhibits the classic pathway and promotes an alternative pathway of macrophage activation after spinal cord injury in mice

    Get PDF
    Background Recent in vivo and in vitro studies in non-neuronal and neuronal tissues have shown that different pathways of macrophage activation result in cells with different properties. Interleukin (IL)-6 triggers the classically activated inflammatory macrophages (M1 phenotype), whereas the alternatively activated macrophages (M2 phenotype) are anti-inflammatory. The objective of this study was to clarify the effects of a temporal blockade of IL-6/IL-6 receptor (IL-6R) engagement, using an anti-mouse IL-6R monoclonal antibody (MR16-1), on macrophage activation and the inflammatory response in the acute phase after spinal cord injury (SCI) in mice. Methods MR16-1 antibodies versus isotype control antibodies or saline alone were administered immediately after thoracic SCI in mice. SC tissue repair was compared between the two groups by Luxol fast blue (LFB) staining for myelination and immunoreactivity for the neuronal markers growth-associated protein (GAP)-43 and neurofilament heavy 200 kDa (NF-H) and for locomotor function. The expression of T helper (Th)1 cytokines (interferon (IFN)-? and tumor necrosis factor-a) and Th2 cytokines (IL-4, IL-13) was determined by immunoblot analysis. The presence of M1 (inducible nitric oxide synthase (iNOS)-positive, CD16/32-positive) and M2 (arginase 1-positive, CD206-positive) macrophages was determined by immunohistology. Using flow cytometry, we also quantified IFN-? and IL-4 levels in neutrophils, microglia, and macrophages, and Mac-2 (macrophage antigen-2) and Mac-3 in M2 macrophages and microglia. Results LFB-positive spared myelin was increased in the MR16-1-treated group compared with the controls, and this increase correlated with enhanced positivity for GAP-43 or NF-H, and improved locomotor Basso Mouse Scale scores. Immunoblot analysis of the MR16-1-treated samples identified downregulation of Th1 and upregulation of Th2 cytokines. Whereas iNOS-positive, CD16/32-positive M1 macrophages were the predominant phenotype in the injured SC of non-treated control mice, MR16-1 treatment promoted arginase 1-positive, CD206-positive M2 macrophages, with preferential localization of these cells at the injury site. MR16-1 treatment suppressed the number of IFN-?-positive neutrophils, and increased the number of microglia present and their positivity for IL-4. Among the arginase 1-positive M2 macrophages, MR16-1 treatment increased positivity for Mac-2 and Mac-3, suggestive of increased phagocytic behavior. Conclusion The results suggest that temporal blockade of IL-6 signaling after SCI abrogates damaging inflammatory activity and promotes functional recovery by promoting the formation of alternatively activated M2 macrophages

    Bridging The Terahertz-Gap Using High-TC Superconducting Emitters With Coherent And Continuous Electromagnetic Wave (Emw) Radiation

    No full text
    Operating high-Tc superconducting intrinsic Josephson junction emitters at 77 K, coherent and continuous THz EMWs with an intensity of several tens of μW can be generated, which provides us with sufficient power for the simple imaging operation. The frequency range may be extended widely as high as 2.4 THz from 0.4 THz. An example is given

    Generation of electromagnetic waves from 0.3 to 1.6 terahertz with a high- T c superconducting Bi<inf>2</inf>Sr<inf>2</inf>CaCu<inf>2</inf>O<inf>8+</inf><inf>δ</inf> intrinsic Josephson junction emitter

    No full text
    To obtain higher power P and frequency f emissions from the intrinsic Josephson junctions in a high-Tc superconducting Bi2Sr2CaCu2O8+δ single crystal, we embedded a rectangular stand-alone mesa of that material in a sandwich structure to allow for efficient heat exhaust. By varying the current-voltage (I-V) bias conditions and the bath temperature Tb, f is tunable from 0.3 to 1.6 THz. The maximum P of a few tens of μW, an order of magnitude greater than from previous devices, was found at Tb∼55 K on an inner I-V branch at the TM(1,0) cavity resonance mode frequency. The highest f of 1.6 THz was found at Tb=10 K on an inner I-V branch, but away from cavity resonance frequencies. A possible explanation is presented

    Efficient Fabrication of Intrinsic-Josephson-Junction Terahertz Oscillators with Greatly Reduced Self-Heating Effects

    No full text
    The intrinsic Josephson junctions (IJJs) in the high-Tc superconductor Bi2Sr2CaCu2O8+δ (Bi2212) are shown to have great potential for the construction of an oscillator emitting in the terahertz-frequency f regime. However, earlier devices with Bi2212 substrates exhibit strong self-heating effects detrimental to their operation and limiting the maximum f to approximately 1 THz. Here we describe an efficient fabrication procedure for a stand-alone-mesa IJJ terahertz oscillator with considerably reduced self-heating effects, greatly expanding the tunability and maximum value of f, potentially even to 15 THz. Their typical current-voltage characteristics, radiation tunability and power, and some practical uses are also presented
    corecore