3,378 research outputs found
Studies of Efficiency of the LHCb Muon Detector Using Cosmic Rays
We study the efficiency of the muon detector using the cosmic ray events collected in the summer and autumn 2008. We find that the efficiencies in all stations are consistent with 100% for cosmic tracks coming from the LHCb interaction point, without any restriction on time. We calculate the efficiencies also per station and region and per station and quadrant, finding consistent results
Probing 3-D matter distribution at z~2 with QSO multiple lines of sight
We investigate the 3-D matter distribution at z~2 with high resolution (R ~
40000) spectra of QSO pairs and groups obtained with the UVES spectrograph at
ESO VLT. Our sample is unique for the number density of objects and the variety
of separations, between 0.5 and 7 proper Mpc. We compute the real space
cross-correlation function of the Lyman-alpha forest transmitted fluxes. There
is a significant clustering signal up to ~2 proper Mpc, which is still present
when absorption lines with high column density (log N > 13.8) are excluded.Comment: Poster paper presented at the IAU Colloquium #199 on "Probing
Galaxies through Quasar Absorption Lines" held in Shanghai, China from March
14th to 18th, 200
Tomography of the intergalactic medium with Ly-alpha forests in close QSO pairs
We study the three-dimensional distribution of non virialised matter at z~2
using high resolution spectra of QSO pairs and simulated spectra drawn from
cosmological hydrodynamical simulations. We have collected the largest sample
of QSO pairs ever observed with UVES at the ESO-VLT, with angular separations
between ~1 and 14 arcmin. The observed correlation functions of the transmitted
flux in the HI Lyman alpha forest along and transverse to the lines of sight
are in good agreement implying that the distortions in redshift space due to
peculiar velocities are small. The clustering signal is significant up to
velocity separations of ~200 km/s, or about 3 h^{-1} comoving Mpc. The regions
at lower overdensity (rho/ < 6.5) are still clustered but on smaller
scales (Delta v < 100 km/s). The observed and simulated correlation functions
are compatible at the 3 sigma level. A better concordance is obtained when only
the low overdensity regions are selected for the analysis or when the effective
optical depth of the simulated spectra is increased artificially, suggesting a
deficiency of strong lines in the simulated spectra. We found that also a lower
value of the power-law index of the temperature-density relation for the Lyman
alpha forest gas improves the agreement between observed and simulated results.
If confirmed, this would be consistent with other observations favouring a late
HeII reionization epoch (at z~3). We remark the detection of a significant
clustering signal in the cross correlation coefficient at a transverse velocity
separation Delta v_{\perp} ~500 km/s whose origin needs further investigation.Comment: Accepted for publication in MNRAS, revised version matching the
accepted on
Implicit neural representations for unsupervised super-resolution and denoising of 4D flow MRI
4D flow MRI is a non-invasive imaging method that can measure blood flow velocities over time. However, the velocity fields detected by this technique have limitations due to low resolution and measurement noise. Coordinate-based neural networks have been researched to improve accuracy, with SIRENs being suitable for super-resolution tasks. Our study investigates SIRENs for time-varying 3-directional velocity fields measured in the aorta by 4D flow MRI, achieving denoising and super-resolution. We trained our method on voxel coordinates and benchmarked our approach using synthetic measurements and a real 4D flow MRI scan. Our optimized SIREN architecture outperformed state-of-the-art techniques, producing denoised and super-resolved velocity fields from clinical data. Our approach is quick to execute and straightforward to implement for novel cases, achieving 4D super-resolution
Development, optimization and characterization of Eudraguard®-based microparticles for colon delivery
Development of pH-dependent systems for colon delivery of natural active ingredients is an attractive area of research in the field of nutraceutical products. This study was focused on Eudraguard® resins, that are methacrylate copolymers approved as “food grade” by European Commission and useful for the production of food supplements. In particular, Eudraguard® Biotic (EUG-B), characterized by a pH-dependent solubility and Eudraguard® Control (EUG-C), whose chemical properties support a prolonged release of the encapsulated compounds, were tested. To obtain EUG microparticles, different preparation techniques were tested, in order to optimize the preparation method and observe the effect upon drug encapsulation and specific colonic release. Unloaded microparticles were initially produced to evaluate the influence of polymer characteristics on the formulation process; subsequently microparticles loaded with quercetin (QUE) as a low solubility model drug were prepared. The characterization of microparticles in the solid-state (FT-IR spectroscopy, differential scanning calorimetry and X-ray diffractometry) indicated that QUE was uniformly dispersed in a non-crystalline state in the polymeric network, without strong signs of chemical interactions. Finally, to assess the ability of EUG-C and EUG-B to control the drug release in the gastric environment, and to allow an increased release at a colonic level, suitable in vitro release tests were carried out by simulating the pH variations along the gastro-intestinal tract. Among the evaluated preparation methods, those in which an aqueous phase was not present, and in particular the emulsion-solvent evaporation method produced the best microparticle systems. The in vitro tests showed a limited drug release at a gastric level and a good specific colon release
Ab-initio Molecular Dynamics study of electronic and optical properties of silicon quantum wires: Orientational Effects
We analyze the influence of spatial orientation on the optical response of
hydrogenated silicon quantum wires. The results are relevant for the
interpretation of the optical properties of light emitting porous silicon. We
study (111)-oriented wires and compare the present results with those
previously obtained within the same theoretical framework for (001)-oriented
wires [F. Buda {\it et al.}, {\it Phys. Rev. Lett.} {\bf 69}, 1272, (1992)]. In
analogy with the (001)-oriented wires and at variance with crystalline bulk
silicon, we find that the (111)-oriented wires exhibit a direct gap at whose value is largely enhanced with respect to that found in bulk
silicon because of quantum confinement effects. The imaginary part of the
dielectric function, for the external field polarized in the direction of the
axis of the wires, shows features that, while being qualitatively similar to
those observed for the (001) wires, are not present in the bulk. The main
conclusion which emerges from the present study is that, if wires a few
nanometers large are present in the porous material, they are
optically active independently of their specific orientation.Comment: 14 pages (plus 6 figures), Revte
Recommended from our members
Self-Assembled Matrix by Umbilical Cord Stem Cells
Corneal integrity is critical for vision. Corneal wounds frequently heal with scarring that impairs vision. Recently, human umbilical cord mesenchymal stem cells (cord stem cells) have been investigated for tissue engineering and therapy due to their availability and differentiation potential. In this study, we used cord stem cells in a 3-dimensional (3D) stroma-like model to observe extracellular matrix organization, with human corneal fibroblasts acting as a control. For 4 weeks, the cells were stimulated with a stable Vitamin C (VitC) derivative ±TGF-β1. After 4 weeks, the mean thickness of the constructs was ∼30 μm; however, cord stem cell constructs had 50% less cells per unit volume, indicating the formation of a dense matrix. We found minimal change in decorin and lumican mRNA, and a significant increase in perlecan mRNA in the presence of TGF-β1. Keratocan on the other hand decreased with TGF-β1 in both cell lineages. With both cell types, the constructs possessed aligned collagen fibrils and associated glycosaminoglycans. Fibril diameters did not change with TGF-β1 stimulation or cell lineage; however, highly sulfated glycosaminoglycans associated with the collagen fibrils significantly increased with TGF-β1. Overall, we have shown that cord stem cells can secrete their own extracellular matrix and promote the deposition and sulfation of various proteoglycans. Furthermore, these cells are at least comparable to commonly used corneal fibroblasts and present an alternative for the 3D in vitro tissue engineered model
Knotlike Cosmic Strings in The Early Universe
In this paper, the knotlike cosmic strings in the Riemann-Cartan space-time
of the early universe are discussed. It has been revealed that the cosmic
strings can just originate from the zero points of the complex scalar
quintessence field. In these strings we mainly study the knotlike
configurations. Based on the integral of Chern-Simons 3-form a topological
invariant for knotlike cosmic strings is constructed, and it is shown that this
invariant is just the total sum of all the self-linking and linking numbers of
the knots family. Furthermore, it is also pointed out that this invariant is
preserved in the branch processes during the evolution of cosmic strings
Influence of a knot on the strength of a polymer strand
Many experiments have been done to determine the relative strength of
different knots, and these show that the break in a knotted rope almost
invariably occurs at a point just outside the `entrance' to the knot. The
influence of knots on the properties of polymers has become of great interest,
in part because of their effect on mechanical properties. Knot theory applied
to the topology of macromolecules indicates that the simple trefoil or
`overhand' knot is likely to be present with high probability in any long
polymer strand. Fragments of DNA have been observed to contain such knots in
experiments and computer simulations. Here we use {\it ab initio} computational
methods to investigate the effect of a trefoil knot on the breaking strength of
a polymer strand. We find that the knot weakens the strand significantly, and
that, like a knotted rope, it breaks under tension at the entrance to the knot.Comment: 3 pages, 4 figure
- …