15,052 research outputs found

    The energy dependence of the πN\pi N amplitude and the three-nucleon interaction

    Get PDF
    By calculating the contribution of the π−π\pi-\pi three-body force to the three-nucleon binding energy in terms of the Ï€N\pi N amplitude using perturbation theory, we are able to determine the importance of the energy dependence and the contribution of the different partial waves of the Ï€N\pi N amplitude to the three-nucleon force. A separable representation of the non-pole Ï€N\pi N amplitude allows us to write the three-nucleon force in terms of the amplitude for NN→NN∗NN\rightarrow NN^*, propagation of the NNN∗NNN^* system, and the amplitude for NN∗→NNNN^*\rightarrow NN, with N∗N^* being the Ï€N\pi N quasi-particle amplitude in a given state. The division of the Ï€N\pi N amplitude into a pole and non-pole gives a procedure for the determination of the Ï€NN\pi NN form factor within the model. The total contribution of the three-body force to the binding energy of the triton for the separable approximation to the Paris nucleon-nucleon potential (PEST) is found to be very small mainly as a result of the energy dependence of the Ï€N\pi N amplitude, the cancellation between the SS- and PP-wave Ï€N\pi N amplitudes, and the soft Ï€NN\pi NN form factor.Comment: RevTex file, 36 pages, 10 figures available from authors: [email protected]

    Coupled ion - nanomechanical systems

    Full text link
    We study ions in a nanotrap, where the electrodes are nanomechanical resonantors. The ions play the role of a quantum optical system which acts as a probe and control, and allows entanglement with or between nanomechanical resonators.Comment: 4 pages, 2 figures, submitted for publicatio

    Degeneracy breaking and intervalley scattering due to short-ranged impurities in finite single-wall carbon nanotubes

    Get PDF
    We present a theoretical study of degeneracy breaking due to short-ranged impurities in finite, single-wall, metallic carbon nanotubes. The effective mass model is used to describe the slowly varying spatial envelope wavefunctions of spinless electrons near the Fermi level at two inequivalent valleys (K-points) in terms of the four component Dirac equation for massless fermions, with the role of spin assumed by pseudospin due to the relative amplitude of the wave function on the sublattice atoms (``A'' and ``B''). Using boundary conditions at the ends of the tube that neither break valley degeneracy nor mix pseudospin eigenvectors, we use degenerate perturbation theory to show that the presence of impurities has two effects. Firstly, the position of the impurity with respect to the spatial variation of the envelope standing waves results in a sinusoidal oscillation of energy level shift as a function of energy. Secondly, the position of the impurity within the hexagonal graphite unit cell produces a particular 4 by 4 matrix structure of the corresponding effective Hamiltonian. The symmetry of this Hamiltonian with respect to pseudospin flip is related to degeneracy breaking and, for an armchair tube, the symmetry with respect to mirror reflection in the nanotube axis is related to pseudospin mixing.Comment: 20 pages, 10 eps figure

    Gap opening in graphene by simple periodic inhomogeneous strain

    Full text link
    Using ab-initio methods, we show that the uniform deformation either leaves graphene (semi)metallic or opens up a small gap yet only beyond the mechanical breaking point of the graphene, contrary to claims in the literature based on tight-binding (TB) calculations. It is possible, however, to open up a global gap by a sine-like one-dimensional inhomogeneous deformation applied along any direction but the armchair one, with the largest gap for the corrugation along the zigzag direction (~0.5 eV) without any electrostatic gating. The gap opening has a threshold character with very sharp rise when the ratio of the amplitude A and the period of the sine wave deformation lambda exceeds (A/lambda)_c ~0.1 and the inversion symmetry is preserved, while it is threshold-less when the symmetry is broken, in contrast with TB-derived pseudo-magnetic field models.Comment: 6 pages, 6 figures; (v2) added figures illustrating opening gap in Graphene mesh on BN, expanded analysis illustrating absence of pseudo-magnetic fields in deformed Graphen

    Calculation of the Self-energy of Open Quantum Systems

    Full text link
    We propose an easy method of calculating the self-energy of semi-infinite leads attached to a mesoscopic system.Comment: 6 pages, 2 figures, published in J. Phys. Soc. Jp

    Energy gap tuning in graphene on hexagonal boron nitride bilayer system

    Full text link
    We use a tight binding approach and density functional theory calculations to study the band structure of graphene/hexagonal boron nitride bilayer system in the most stable configuration. We show that an electric field applied in the direction perpendicular to the layers significantly modifies the electronic structure of the whole system, including shifts, anticrossing and other deformations of bands, which can allow to control the value of the energy gap. It is shown that band structure of biased system may be tailored for specific requirements of nanoelectronics applications. The carriers' mobilities are expected to be higher than in the bilayer graphene devices.Comment: 10 pages, 7 figures, submitted to Physical Review

    Hot nuclear matter in the modified quark-meson coupling model with quark-quark correlations

    Get PDF
    Short-range quark-quark correlations in hot nuclear matter are examined within the modified quark-meson coupling model (MQMC) by adding repulsive scalar and vector quark-quark interactions. Without these correlations, the bag radius increases with the baryon density. However when the correlations are introduced the bag size shrinks as the bags overlap. Also as the strength of the scalar quark-quark correlation is increased, the decrease of the effective nucleon mass MN∗M^{*}_N with the baryonic density is slowed down and tends to saturate at high densities. Within this model we study the phase transition from the baryon-meson phase to the quark-gluon plasma (QGP) phase with the latter modeled as an ideal gas of quarks and gluons inside a bag. Two models for the QGP bag parameter are considered. In one case, the bag is taken to be medium-independent and the phase transition from the hadron phase to QGP is found to occur at 5-8 times ordinary nuclear matter density for temperatures less than 60 MeV. For lower densities, the transition takes place at higher temperature reaching up to 130 MeV at zero density. In the second case, the QGP bag parameter is considered medium-dependent as in the MQMC model for the hadronic phase. In this case, it is found that the phase transition occurs at much lower densities.Comment: 8 pages, latex, 4 eps figure

    Bulge RR Lyrae stars in the VVV tile b201\textit{b201}

    Full text link
    The VISTA Variables in the V\'ia L\'actea (VVV) Survey is one of the six ESO public surveys currently ongoing at the VISTA telescope on Cerro Paranal, Chile. VVV uses near-IR (ZYJHKsZYJHK_{\rm s}) filters that at present provide photometry to a depth of Ks∼17.0K_{\rm s} \sim 17.0 mag in up to 36 epochs spanning over four years, and aim at discovering more than 106^6 variable sources as well as trace the structure of the Galactic bulge and part of the southern disk. A variability search was performed to find RR Lyrae variable stars. The low stellar density of the VVV tile b201\textit{b201}, which is centered at (ℓ,b\ell, b) ∼\sim (−9∘,−9∘-9^\circ, -9^\circ), makes it suitable to search for variable stars. Previous studies have identified some RR Lyrae stars using optical bands that served to test our search procedure. The main goal is to measure the reddening, interstellar extinction, and distances of the RR Lyrae stars and to study their distribution on the Milky Way bulge. A total of 1.5 sq deg were analyzed, and we found 39 RR Lyrae stars, 27 of which belong to the ab-type and 12 to the c-type. Our analysis recovers all the previously identified RR Lyrae variables in the field and discovers 29 new RR Lyrae stars. The reddening and extinction toward all the RRab stars in this tile were derived, and distance estimations were obtained through the period--luminosity relation. Despite the limited amount of RR Lyrae stars studied, our results are consistent with a spheroidal or central distribution around ∼8.1\sim 8.1 and ∼8.5\sim 8.5 kpc. for either the Cardelli or Nishiyama extinction law.Comment: 10 pages, 8 figures, accepted for publication in Astronomy and Astrophysic

    Stochastic Approach to Enantiomeric Excess Amplification and Chiral Symmetry Breaking

    Full text link
    Stochastic aspects of chemical reaction models related to the Soai reactions as well as to the homochirality in life are studied analytically and numerically by the use of the master equation and random walk model. For systems with a recycling process, a unique final probability distribution is obtained by means of detailed balance conditions. With a nonlinear autocatalysis the distribution has a double-peak structure, indicating the chiral symmetry breaking. This problem is further analyzed by examining eigenvalues and eigenfunctions of the master equation. In the case without recycling process, final probability distributions depend on the initial conditions. In the nonlinear autocatalytic case, time-evolution starting from a complete achiral state leads to a final distribution which differs from that deduced from the nonzero recycling result. This is due to the absence of the detailed balance, and a directed random walk model is shown to give the correct final profile. When the nonlinear autocatalysis is sufficiently strong and the initial state is achiral, the final probability distribution has a double-peak structure, related to the enantiomeric excess amplification. It is argued that with autocatalyses and a very small but nonzero spontaneous production, a single mother scenario could be a main mechanism to produce the homochirality.Comment: 25 pages, 6 figure
    • …
    corecore