72 research outputs found

    Atomic-scale dents on cellulose nanofibers: the origin of diverse defects in sustainable fibrillar materials

    Get PDF
    セルロースナノファイバーに生じた原子レベルの欠陥構造を発見 --理想的なバイオポリマー材料の生産にむけて--. 京都大学プレスリリース. 2022-10-07.Atomic-scale dent structures on the surfaces of cellulose nanofibers were detected. These dent parts constituted at least 30–40% of the total length of the dispersed nanofibers, and deep dents induced the kinking and fragmentation of nanofibers

    Cross-polarization dynamics and conformational study of variously sized cellulose crystallites using solid-state 13C NMR

    Get PDF
    Cellulose forms crystalline fibrils, via biosynthesis, that can be just a few nanometers wide. The crystallinity is a structural factor related to material performance. Recently, many routes to isolate these fibrils as nanocellulose have been developed, and there exist various types of nanocellulose with different crystallinities. Quantitative assessment of the crystallinity of nanocellulose is thus essential to advance knowledge in the high performance and functionality of such materials. Solid-state 13C cross-polarization/magic-angle spinning (CP/MAS) nuclear magnetic resonance (NMR) spectroscopy is a strong tool to investigate the structural features and dynamics of solid cellulose. The crystallinity is often evaluated by using the NMR signal ratio of the C4 crystalline and noncrystalline regions as a crystallinity index (CI) value. To calculate the CI value, it is necessary to examine the dependence of the contact time (CT) for CP on the signal intensity and set the optimum CT at a maximum of the signal intensity. However, the dependence has not been investigated for evaluation of the CI value of various cellulose samples with different crystal sizes. Here, we optimized the CT for evaluation of the CI value of cellulose with different crystal sizes. The error in the CI at the optimized CT was ~ 3%. At the optimized CT, the structural change after surface modification by TEMPO-oxidation was also analyzed from the NMR spectra of the C6 region. The relationship between the CI value and the degree of oxidation shows that it is possible to evaluate the degree of oxidation from the NMR spectra irrespective of the crystallinity of cellulose. Furthermore, the C4-based CI value was linearly correlated with the C6-based trans-gauche (tg) ratio, which is approximated by a function, CI = 0.9 tg ratio

    Nanocellulose Xerogels With High Porosities and Large Specific Surface Areas

    Get PDF
    Xerogels are defined as porous structures that are obtained by evaporative drying of wet gels. One challenge is producing xerogels with high porosity and large specific surface areas, which are structurally comparable to supercritical-dried aerogels. Herein, we report on cellulose xerogels with a truly aerogel-like porous structure. These xerogels have a monolithic form with porosities and specific surface areas in the ranges of 71–76% and 340–411 m2/g, respectively. Our strategy is based on combining three concepts: (1) the use of a very fine type of cellulose nanofibers (CNFs) with a width of ~3 nm as the skeletal component of the xerogel; (2) increasing the stiffness of wet CNF gels by reinforcing the inter-CNF interactions to sustain their dry shrinkage; and (3) solvent-exchange of wet gels with low-polarity solvents, such as hexane and pentane, to reduce the capillary force on drying. The synergistic effects of combining these approaches lead to improvements in the porous structure in the CNF xerogels

    Surfactant controlled zwitterionic cellulose nanofibril dispersions

    Get PDF
    Zwitterionic cellulose nanofibrils (ZCNF) with isoelectric point of 3.4 were obtained by grafting glycidyltrimethylammonium chloride onto TEMPO/NaBr/NaOCl-oxidised cellulose nanofibrils. ZCNF aqueous dispersions were characterized via transmission electron microscopy, rheology and small angle neutron scattering, revealing a fibril-bundle structure with pronounced aggregation at pH 7. Surfactants were successfully employed to tune the stability of the ZCNF dispersions. Upon addition of the anionic surfactant, sodium dodecyl sulfate, the ZCNF dispersion shows individualized fibrils due to electrostatic stabilization. On the contrary, upon addition of the cationic species dodecyltrimethylammonium bromide, the dispersion undergoes charge neutralization, leading to more pronounced flocculation

    New Aspects of Cellulose Nanofibers

    No full text

    Optimization of preparation of thermally stable cellulose nanofibrils via heat‐induced conversion of ionic bonds to amide bonds

    No full text
    International audienceImproving the thermal stability of nanocelluloses is important for practical applications such as melt compounded nanocellulose-reinforced polymer composites and flexible substrates for nanocellulose-containing electronic devices. Here, we report optimum conditions for a straightforward surface modification strategy for improving the thermal stability of 2,2,6,6-tetramethypiperidine-1-oxyl (TEMPO)-oxidized cellulose nanofibrils (TOCNs); the heat-induced conversion of TOCN alkyl ammonium carboxylates to amides. Different amine-terminated compounds (R-NH2) were grafted onto the surface of TOCNs under aqueous conditions. The influences of R-NH2 molecular weight, R-NH2/TOCN-COOH molar ratio, and thermal stability of R-NH2 on the properties of the grafted TOCN films were investigated through infrared spectroscopy and thermogravimetric analysis. For maximum thermal improvement of up to 90 °C, complete ionic bonding of TOCN carboxy groups with R-NH2 was required, as well as proper selection of the R-NH2 compound. A controlled heating process was also needed to achieve effective ionic-to-amide bond conversion
    corecore